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Abstract

It is well known there are good average algorithms to solve some problem classes.
However, there is no best solver for all instances of said class. Rather, an algorithm’s
performance is highly dependent on the instance. In algorithm selection, one tries
to find the best algorithm to solve a problem instance and therefore improve over
good average solvers.
This is done by choosing the best instance solver (algorithm with the lowest runtime)
based on the features of said instance. Since machine learning models can make
predictions based on the instance’s similarity to past instances, they are a good
candidate to solve this problem. In past research, regression and ranking have been
used to predict the best algorithm (mostly) as separate approaches. However, there
already are machine learning models that combine ranking and regression. In this
thesis, we introduce Hybrid Decision Trees. A hybrid decision tree is based on a
decision tree with splits based on a convex combination of ranking and regression
losses. In addition to the split, one can choose different components to impact the
hybrid decision trees.
The quality of hybrid decision trees is evaluated on a selection of scenarios that cover
different problem classes. Compared to some algorithm selection approaches (e.g.
per algorithm decision tree regressors) hybrid decision trees perform adequately (on
some scenarios). However, they rival neither the quality of e.g. survival trees nor
the quality of preexisting hybrid models.
The main result of this thesis is that a convex combination of ranking and regression
loss can improve the prediction quality over an algorithm selection model based
solely on regression/on ranking.
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Introduction of Hybrid

Decision Trees

1

For most problem classes (sorting), there are various algorithms that can solve all
problem instances (can sort all lists). These algorithms are called solvers and their
performance depends on the problem instance (list that is to be sorted). While
there are algorithms that are widely considered to be better solvers than others
(Mergesort is considered to have better performance than Bubblesort), this is not
true for all problem instances. However, these solvers do not perform best on all
instances [Ker+18]. Since using the best performing algorithm can save resources
the question of finding the best solver for specific problem instances is introduced.
A trivial example that illustrates that. Mergesort has the same performance for every
list and is considered a good solver. The performance of Bubblesort is dependent on
the list. The algorithm performs well on some lists on poor on others. If one knew
whether Bubblesort performs better or worse than Mergesort on a given list, one
would always choose the better performing algorithm.

Because of this performance complimentarity, it is reasonable to decide which al-
gorithm to use based on the input data for some problem classes. This problem
is called Algorithm Selection [Ric76] and has been tackled with a wide variety of
approaches in the past. In general, the research is focused on the area of machine
learning [Ker+18; Hut+15; Xu+] with the general idea of training a model M to
predict the best performing algorithm from a set of candidate algorithms (for some
instance) [Hut+15].
To find the best algorithm, one often models Algorithm Selection as a regression,
classification, or ranking problem.

The training data of a classification model is a set of problem instances and their
respective best performing algorithms. Given an instance, a classification model then
predicts which candidate algorithm performs best. Since the training data only con-
sists of the best performing algorithms, the model can not utilize any additional data
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(e.g. performance information of the candidate algorithms). Thus, this approach
performs poorly compared to different approaches and is therefore not mentioned
further [Tor+20].
When using regression, the general idea is to train a set of models. Each model
Mi it trained to predict the performance of a separate algorithm Ai. Therefore the
training data of Mi consists of instances and the respective performances of Ai on
the instance. To predict which algorithm performs best, each model Mi predicts the
performances of their respective algorithms and the best performing algorithm is
selected as a prediction [Hut+15].
Ranking differs from classification and regression because the model predicts a rank-
ing of algorithms. The training data consists of a set of instances and a respective
quality ranking of all solvers. A higher ranking of A1 than A2 means that A1 is
predicted to perform better than A2 [Hül+08].

Fig. 1.1.: Illustration of the weakness of re-
gression for algorithm selection. In
this figure, two models are utilized
to predict whether algorithm A or
algorithm B is better suited for
some problem instance.

As mentioned above a regression based
model is based on determining the best
solver by making performance predic-
tions for all algorithms (with a separate
model for each algorithm). The mod-
els are trained to make accurate per-
formance predictions. While these pre-
dictions are a good starting point, the
model does not directly predict which
algorithm performs best. The disadvan-
tage of this is shown in Figure 1.1. Here,
the algorithm performance predictions
of two models (model one, and model
two) are compared. This is an example
of algorithm selection with two candi-
date algorithms (algorithm A, and algo-
rithm B) for one instance. The ground-
truth performances indicated that algorithm B is a better solver (performs better) for
the given instance. This is predicted correctly by model one. However, model two
predicts algorithm A to have a better performance. Although a choice of algorithm
based on model one would give the correct solution, model one’s predictions are
poorer than model two’s in terms of the regression loss. This is the case as the
difference between the algorithms’ ground truth and predicted performances is
larger. This shows that, while model one gives a better solution to the algorithm
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selection problem, the performance predictions of model one are worse than the
predictions of model two. Therefore, model one is the worse model in terms of
regression.

In comparison to regression, ranking seems to be a better approach to the algorithm
selection problem because the model is trained to predict a ranking of algorithms
instead of their performance. To that end, the error used to train a model does
not depend on the difference in runtime. Rather it depends on the ranking of algo-
rithms. In Figure 1.1 one can see that model one predicts algorithm B to outperform
algorithm A (opposite in prediction of model two). This means that model one is
the better model in terms of ranking. Since having an inversion in a ranking of
algorithm performances might be worse if the algorithms that are ranked wrong
have a significant difference in their ground-truth performance, it is worth exploring
whether the model’s performance can be improved by utilizing performance and
ranking information at the same time. [Han+20].

In this thesis, we will combine the approaches of Ranking and Regression to train
a model M . This is motivated by the fact that both Regression and Ranking-based
approaches have performed well in the past. However, they have inherent short-
comings explained above. The idea is to balance out these shortcomings by using a
combined approach. To that end, we explore the idea of using a combined loss func-
tion to train a model as in “Hybrid Ranking and Regression for Algorithm Selection”
[Han+20].

In contrast to the paper named above we choose "Binary Decision Tree" as our model.
This model is a well-known approach in machine learning and has been successfully
used in the past on both Regression and Label Ranking problems [Bre+84; CHH09].
Additionally, Decision Trees have been used as a model to solve the algorithm
selection problems (with regression and random forests) [Hut+15] in the past.
These past results make this approach very appealing. The resulting decision tree is
called hybrid decision tree.
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Thesis Overview The contents of this thesis can be split into three parts:
First, the algorithm selection problem is introduced and related work is explained
(chapter 2).
Building on that, hybrid decision trees are introduced (chapter 3) as a candidate
model to solve the algorithm selection problem. Note that hybrid decision trees are
a very versatile model, and for most components various candidates are introduced.
The quality of hybrid decision trees is then evaluated. For this evaluation, first, the
overall goals and research questions are discussed (chapter 4), and then hybrid
decision trees are evaluated (chapter 5). The first evaluation step is utilizing ablation
studies to find candidate hybrid decision tree configurations that are then compared
to other algorithm selection models. Lastly, the research questions are answered
based on the evaluation, the results are summarized, and directions for future
research that builds on this thesis are introduced (chapter 6).
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Problem Definition and

Related Work

2

2.1 Problem Definition

As explained in chapter 1, the problem of Algorithm Selection is motivated by the
observation that no algorithm performs best for each problem instance. Instead,
the performance of an algorithm is highly dependent on the underlying problem
instance. Suppose some good average solvers take hours, days, or even months to
solve a specific problem instance, then there is a high incentive for pre-calculating
an algorithm that performs better (on this particular instance) since this could save
resources [Ker+18].

2.1.1 Algorithm Selection

The problem of selecting the best algorithm for a problem instance is called Algorithm
Selection [Ric76]. Given a problem (e.g., sorting a list), there are various instances
I of said problem (different lists) and various candidate algorithms A = {A1, ..., Ak}
that one may choose. To that end, one is interested in mappings

s : I æ A (2.1)

called algorithm selectors that map problem instances (the set of possible instances
I is called instance space) to the best algorithm from a set of candidate algorithms
A.
To that end, one introduces a performance function

m : I ◊ A æ R (2.2)

This function maps a combination of an instance In and algorithm Ai to a perfor-
mance score that quantifies Ai’s performance on In (note that given one Algorithm
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Ai there is only one performance function mi that is used to predict Ai’s performance
on all instances). For simplicity, we define mi(In) := m(In, Ai). For the algorithm
Aj with the best performance on instance In, it holds m(In, Aj) Ø m(In, Ai) for all
other algorithms Ai œ A.

A perfect selector sú œ {s|s : I æ A} would be the oracle

sú(In) œ arg max
AiœA

E[m(In, Ai)] (2.3)

for all In œ I. The E is needed in Equation 2.3 as many algorithms contain random-
ness, which might lead to an algorithm not achieving the same performance on an
instance In in 2 different runs [Tor+20]. Therefore, one should not just consider
the performance of one run but the average performance of Ai on instance In.

Since it is impossible to calculate an algorithm’s performance (without running it),
the problem of choosing the best algorithm is not easily solved.

2.2 Related Work

There has been a wide variety of approaches applied to the algorithm selection
problem [Ker+18; Hut+15; Xu+] which are relevant to this thesis. However, this
thesis is mainly impacted by Ranking, Regression, and Combined Ranking and
models. The related papers are noted below. In addition to these papers, some other
publications influenced this thesis. Those are denoted throughout the thesis and can
be found in the bibliography.

2.2.1 ASlib: A Benchmark Library for Algorithm Selection

“ASlib: A Benchmark Library for Algorithm Selection”[Bis+16] is a significant
paper in the algorithm selection area. Among other things a standardized format
for Algorithm Selection scenarios is proposed. This standardized format and the
scenarios given in the associated repository enable a better comparison of different
algorithm selection approaches. It has since been adopted by most other related
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papers cited in this thesis. Based on this format, there is a wide variety of datasets
from different problem scenarios in the associated repository.

2.2.2 Algorithm Selection with Regression

The idea of regression has been incorporated into various algorithm selection ap-
proaches in the past. This is particularly true for the Selection of a SAT-Solver. While
there exist very efficient SAT Solvers, it is possible that for a given input, one solver
outperforms the other by a large margin. Therefore, past research already focused
on this. In [Xu+] the well known approach "Satzilla07" was introduced. Here
the authors use ridge Regression to predict the runtime of SAT solvers. While this
approach is not state-of-the-art anymore, it is still shown that using Regression might
be a good approach in some cases.

2.2.3 Algorithm Selection with Survival Trees

Survival Trees build on the Regression approaches but focus on dealing with incom-
plete training instances. As explained later, incomplete data may introduce a bias
into a regression model if it is set to µ · C. To solve this problem, the authors com-
bined Regression-based approaches in [Tor+20] with methods of survival analysis
to train a Random survival forest that predicts a survival time.

2.2.4 Algorithm Selection with Combined Ranking and Regression

There has already been research on combined ranking and regression for algorithm
selection in the past. In [Han+20], it has been shown that the combined approach
of regression rand ranking performs better than other state-of-the-art approaches in
the given scenarios. The authors used a combined ranking and regression loss as in
Equation 3.57 to train linear/quadratic models and feed-forward neural networks.
For example, they used the squared hinge ranking loss/ and mean squared error.
However, the tendency was that a higher value of ⁄ (more significant impact of
ranking) leads to the best results.
This paper has motivated most of the work in this thesis.
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2.2.5 Label Ranking

Label ranking approaches are well known in machine learning [VG10]. An example
of this is research on rating the value of information to build a ranking [Val+09].
However, ranking is also prominent in other areas of machine learning, such as
Algorithm Selection, and since this thesis deals with Algorithm Selection the related
work mentioned here is focused on that.

Label Ranking Trees

Very closely related to the model of this thesis is the paper “Decision Tree and
Instance-Based Learning for Label Ranking” [CHH09]. In this paper, the authors use
a ranking loss based on the variance in the rankings of each label to train a model for
label ranking scenarios (not specialized in the topic of algorithm selection). To this
end, they need to define a "locally correct" order with the ’Expected Maximization’
algorithm. While this paper showed that Label Ranking Trees do not perform as
well as the other instance-based ranking approach it still showed that Label Ranking
Trees perform just as well as other state-of-the-art approaches.

Label Ranking for Algorithm Selection

As mentioned above, there has been work on ranking for algorithm selection in the
past. In [OHL15] the authors explain an approach called "Ranking-Based Algorithm
Selection" to choose a solver from a set of solvers. This approach is evaluated on the
’SAT 2012’ competition dataset (also used in this thesis) and performs "comparable or
adequate" compared to "SATZILLA" on most sets from the SAT 2012 competition.
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Methodology 3

In this thesis, we explore utilizing a convex combination of ranking losses and regres-
sion losses to train a binary decision tree. We call this model hybrid decision tree.
However, hybrid decision trees are a very adaptable model in general, the utilized
losses are just one component of hybrid decision trees. Therefore, we introduce
various hybrid decision tree components in this chapter.

Firstly, we motivate hybrid decision trees (section 3.1) and then discuss the training
data structure used to build the tree (section 3.2). After that, the model of hybrid
decision trees is introduced (section 3.3). As mentioned above, binary decision trees
are a versatile model with different initializations. Each group of components is
explained in a separate section from section 3.4 to section 3.7.

3.1 Approach Design

As mentioned in section 2.1 the problem of algorithm selection deals with selecting
the best performing algorithm for an instance In. A natural approach is predicting
the performances of algorithms A1, ..., Ak on this instance. This can be formalized
as making predictions on the performance function introduced in Equation 2.2.
Supervised machine learning is an appropriate approach to this problem, as it allows
to make predictions based on past data which can be generated/is generated already
(refer to section 2.2.1).

As machine learning models don’t work on the concrete instance I but rather its
features, one needs to transform I into a vector of features I œ Rn. Even though
feature calculation is not further explained in this thesis, one should understand
that the intuition is to find numeric properties that provide information on I that
correlate with the difficulty solving I with the candidate algorithms. However, not
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every feature has to provide information for every algorithm. Example features that
might be useful for the Boolean Satisfiability problem (SAT) ([Xu+]) are number of
"and" operators ·, the number of "or" operators ‚.
As mentioned earlier I can be extracted from the instance I. However, we treat the
instance and the vector extracted from the instance as synonyms.
To solve the problem of selecting one of the best algorithms (Equation 2.3) with
machine learning, one approach is fitting a separate Regression model

Mi : I æ R (3.1)

for each Algorithm Ai œ A to make performance predictions. These models
M1, ..., Mk can be understood as one combined Model

M : I æ Rk (3.2)

I ‘æ ŷ with ŷ = (M1(I), . . . Mk(I)) œ Rk (3.3)

This regression approach of training separate regressors (e.g., regression trees
[Bre+84]) for each algorithm motivates the general direction of this thesis. The
main difference is that instead of training individual models M1, ..., Mk for each
algorithm, we choose to train one model M that makes performance predictions for
all algorithms. To train this model M , a convex combination of a ranking loss and a
regression loss is utilized.

3.2 Data Design

As briefly mentioned, we use the supervised learning model Decision Trees [Bre+84].
Decision trees are based on the idea of recursively splitting a set of data into two
subsets. To explain how decision trees work in detail, we first introduce the structure
of our training data.

The idea is to combine each problem instance In from I with a label that consists of
the performance of all considered algorithms A1, ..., Ak as in “Hybrid Ranking and
Regression for Algorithm Selection” [Han+20]. This results in the following data
design

D = {(In, yn)}N
n=1 = {(In, (mÕ

1(In), ..., mÕ
k(In)))}N

n=1 (3.4)

yn = (mÕ
1(In), ..., mÕ

k(In)) œ Rk (3.5)
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where yn is referred to as the label of an instance In.

The functions

mÕ
i : I æ R (3.6)

are introduced as an extension of the performance functions mi introduced in Equa-
tion 2.2. There are two key differences in the behavior of mi, and mÕ

i. Firstly, while
mi(In) is the performance of Ai on the instance In, mÕ

i(In) is scaled to the interval
from [0,1]. This is done as ranking (introduced in section 3.6.3) and regression
losses (introduced in section 3.6.2) often differ in their target domains with unin-
tended consequences (further explained in section 3.6.5). This scaling results from
our preliminary results, which are explained in section 5.3, and leads to the scaled
ranking losses. The other difference is that in the case of incomplete performance
information (mi(In) not known), mÕ is set to a fixed value that exceeds the largest
reachable value (refer to next paragraph) [Han+20].

3.2.1 Incomplete Labels

The incomplete performance information of an algorithm (introduced above) can
result from various circumstances in generating training data. In this process,
every algorithm needs to be run on every instance, and it might be that there are
algorithms that perform poorly on some instances. This results in the following
problem: Running all algorithms till completion could result in a very costly process
of building training datasets. To solve this issue, one introduces a threshold C.
All algorithms whose computation is not finished when the runtime reaches C are
terminated. As a result, there are combinations of instances and algorithms with
no exact/with censored performance information. The only knowledge about their
performance is that the runtime exceeds C. The affected instances should not be
removed from the set of instances for two reasons:

1. Instances that have incomplete labels should not be removed from considera-
tion as some other algorithms might perform reasonably well on them.

3.2 Data Design 11



2. The knowledge that an algorithm is terminated on an instance timeout is
also important. If one excluded this instance from consideration, the training
data would make no implications for the algorithm’s performance on similar
instances.

A similar logic shows that one should not remove the algorithms from consideration
either:

• Algorithms that are terminated on some instances might be the best performing
algorithms on others. Therefore, disregarding them would contradict the idea
of finding the best solver for a problem instance.

Handling of Censored Information Therefore, an instance with censored perfor-
mance data needs to be handled. To that end, we have a variety of options [Tor+20].
In this thesis we set their performance to

mÕ
i : I æ R mÕ(In, Ai) =

Y
]

[
m(In, Ai) , m(In, Ai) < C

µ · C , else
(3.7)

motivated by the par10 (penalized average runtime) loss [Tor+20]. This sets
the performance of algorithms that are terminated because C is reached to worse
performance than any algorithm that completes its calculation. This results in
disregarding them as the choice for the best-performing algorithm and is commonly
done with µ = 10 (as in PAR10).
As the performances are scaled to [0, 1], the final performance function

mÕ
i : I æ [0, 1] mÕ(In, Ai) =

Y
]

[

m(In,Ai)
µ·C , m(In, Ai) < C

1 , else
(3.8)

sets the performance of terminated algorithms is set to 1 and scales the performance
of all other algorithms accordingly. Note that an increase of µ results in a decrease
of performance of all algorithms that are not terminated.

The downside of this PAR-inspired approach is that it introduces a bias into the
model, which is visualized in Figure 3.1. This figure shows how predictions change
based on handling incomplete labels. To that end, there are two graphs Figure 3.1a
and Figure 3.1b. In Figure 3.1a the algorithms are not stopped threshold. In
Figure 3.1b the algorithms are stopped, and the model uses the threshold (with
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µ = 1) value instead. In Figure 3.1a the linear regression reaches significantly higher
values than in Figure 3.1b.

(a) Linear Regression without Runtime
Threshold C

(b) Linear Regression with Runtime Threshold
C

Fig. 3.1.: Comparison of Linear Regressions that are built on performance information. In
Figure 3.1a all algorithms are run till they finish their calculation. In Figure 3.1b
algorithms that have not finished their calculation are stopped at a threshold C.
This comparison shows that setting censored labels to a fixed value introduces a
huge bias into a model.

The difference in the regression shows the bias introduced into a model if incomplete
performance data is handled as explained above. Nevertheless, models which set
those values to µ ·C are easily trained and perform reasonably well and are therefore
used in this thesis for the hybrid decision trees introduced in the following section.
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3.3 Binary Decision Trees

The explained above dataset D is then used to evaluate the quality of our model. To
this end, the dataset is split into two parts. Dtrain is used to drain the model, and
Dtest is used to make performance predictions. In this thesis, we introduce a new
model "hybrid decision tree " based on a standard Binary Decision Tree.
Binary Decision Trees have been used as a model in machine learning for various
applications in the past [Bre+84; CHH09; Hut+15; RM07]. They are one of the
most versatile and best-studied approaches in Data Science. This thesis will explore
their use with a combined ranking and regression loss.
In the following paragraphs, we will discuss three points:

1. Basic Functionality of Decision Trees (section 3.3.1)

2. The process of building a tree (section 3.3.2)

3. The process of making a prediction (section 3.3.2)

3.3.1 Basic Functionality of Decision Trees

Fig. 3.2.: Binary Decision Tree - without fea-
tures

Binary decision trees are based on the
idea of recursively dividing a dataset
D into subsets D+, D≠. The process of
building a binary decision tree and uti-
lizing a binary decision tree for predic-
tions is explained in the following two
paragraphs.

Fundamental explanation of Binary De-
cision Trees In Figure 3.2 the process
of building a tree is shown. Each rectan-
gle represents one instance of the training dataset, whereas the rectangle’s color
represents the instance’s label. With each level, the set of rectangles is split into
two subsets of similarly colored rectangles. This splitting is repeated until a level of
homogeneity is reached. This can either mean that there are only rectangles of the
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same color or that the colors are very similar.
On each level, there are various sets of rectangles, called nodes. Given one node N ,
the rectangles of which it consists of are called the dataset of a node N and referred
to as DN . The nodes that result from a split are the roots of their sub-trees.

Binary Decision Trees as a Machine Learning Model However, the above scenario
was solely based on the colors, which is a simplification. In contrast to Figure 3.2,
machine learning models do not work exclusively based on the labels. Instead, the
split is chosen based on a set of features left out in Figure 3.2. There are three
features utilized for each instance:

1. number œ R

2. number even or odd œ {0.1}

3. number divisible by 4 œ {0.1}

The same tree is shown again in the Figure 3.3, but features and split points are also
included. For simplicity, not all features are shown in the figure (features 2 and 3
can be calculated from feature 1).

Fig. 3.3.: Binary Decision Tree - with features

If one wants to use a Decision tree to
predict a label for a new instance I, one
propagates the new instance through
the tree starting at the root. With each
level, one evaluates whether a leaf node
is reached, in which case the label would
be returned as a prediction. In Fig-
ure 3.3 the prediction would be a mix-
ture of all the colors if a leaf node
reached. If the current node is not a leaf node, one determines whether I be-
longs in the left or right sub-tree based on the split chosen for the dataset.
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3.3.2 Pseudocode

Building of a Binary Decision Tree From a Dataset

As explained earlier, the building procedure for binary decision trees is based on
a recursive split of a dataset. This process is shown in more detail in Algorithm
1. The procedure calls in this algorithm will be explained further in the following
sections.

Algorithm 1 build_decision_tree(self, D)
1: self.D Ω D
2: self.label Ω calculate_node_label(D)
3: if ¬ stopping_criterion(D) then
4: self.c, self.f Ω find_splitting_criterion(D)
5: D+, D≠ Ω split(D, self.c, self.f)
6: self.left_child Ω build_decision_tree(D≠)
7: self.right_child Ω build_decision_tree(D+)
8: end if
9: return self

After the dataset is assigned and the label calculated (line 2, section 3.4), one checks
whether the stopping criterion is reached (line 3, section 3.7). This determines
whether or not the node self is a leaf and is the termination condition of the
algorithm.
If this stopping criterion is not reached, the splitting criterion is calculated (line
4). This means that a routine is started that compares all possible ways to split the
dataset (every feature, every splitting point), and the best (split according to a loss
function introduced in section 3.5 is selected). This split is then saved as self.c (split
point) and self.f (feature). Then the dataset is divided (all instances that have a
value < self.c at feature f are in the left sub-tree, all other instances in the right),
and the recursive algorithm builds the left and right sub-trees (lines 5-7).
In the end, the binary tree is returned. Due to the recursive nature of this algorithm,
an entire tree is built by this simple procedure.
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Predicting with a Binary Decision Tree

Algorithm 2 predict(tree, I)
1: if ¬ has_children(tree) then return tree.label
2: else
3: subtree Ω select_subtree(tree.c, tree.f, I)
4: end if
5: return predict(subtree, I)

When predicting a label for a new instance I, one starts at the root node and
propagates it through the tree. To that end, the procedure Algorithm 2 first checks
whether the given tree has any children or is a leaf (line 1). If it is a leaf, the label of
the tree is returned. Otherwise, whether the instance I belongs in the left or right
sub-tree is checked. If I at feature self.f is smaller than self.c the left sub-tree is
selected. Otherwise, the right sub-tree is selected (line 3). Lastly, the algorithm
is called recursively on the correct sub-tree, starting at either the left or the right
child.

Short Summary

As seen above, the general concept of binary decision trees is adaptable to many
different configurations. In addition to quantifying different splitting points with a
convex combination of a ranking and regression loss function to find the best split,
one can also utilize different node labels, stopping criteria,... Thus it makes sense to
evaluate the performance of varying tree configurations. The binary decision tree
specified throughout the following sections is called hybrid decision tree.

3.4 Node Label

When calling predict on a hybrid decision tree with an instance I, the instance is
propagated through the tree until a leaf node N is reached. Then the label of N is
returned. This label is calculated as a representation of all the instances in DN .
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To calculate the label of a node N, one aggregates the labels of all instances in the
node’s dataset DN to one consensus label. In this thesis, labels are aggregated by
algorithm-wise averaging the algorithm performance of the instances.

Let DN be the set of instances and labels node N. Then, we define YN as the
consensus label.

YN := (YN1 , YN2 , ..., YNk) (3.9)

Here the values

YNi := 1
|DN |

ÿ

(In,yn)œDN

mÕ
i(In) (3.10)

represent the average performance of Ai on the instances in DN .

With this consensus label, one can predict both algorithm performances and an
overall ranking.

3.5 Splitting Criterion

When choosing a splitting criterion for the dataset, one needs to consider two dif-
ferent problems. Firstly, we need to select a feature f to be split on, and secondly,
we need to find a concrete splitting value c. We calculate the best split on each
feature separately by iterating over all possible splitting criteria. The best split is
then chosen from the list of best splits for each feature.

However, one does not include splitting points that would lead to unreasonable
small datasets. This would lead to overfitting, and the depth of the tree would
increase drastically. To that end, a parameter min_samples_leaf is introduced that
decreases the number of possible splitting points as points that would result in only
x < min_sample_leaf instances in one node are not considered.
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To quantify the quality of a split of DN it is divided into two subsets D≠
N and D+

N that
are supposed to be more homogeneous than DN . The homogeneity of the resulting
datasets is quantified by a loss function L (further explained in section 3.6). This
implies that calculating the homogeneity loss for both resulting datasets as a way to
quantify the quality of a split. A loss function

LDN
split : R ◊ F æ R (3.11)

that measures this homogeneity of a split is based on quantifying the homogeneity
of the datasets that result from a given split at a feature F and a concrete splitting
point in R.

The first intuition of a split loss

LDN
split(c, f) = L(D≠) + L(D+) D≠, D+are the resulting partitions (3.12)

has the downside that even if the resulting datasets are of uneven size they have the
same impact on the overall loss.

Therefore, the loss of a split

LDN
split(c, f) = |D≠|

|D| L(D≠) + |D+|
|D| L(D+) (3.13)

is defined as the weighted sum of losses of the resulting datasets D+ and D≠

3.6 Quantifying the Homogeneity of a Node’s Dataset

As mentioned in section 3.5 to determine the best split of a dataset, one utilizes a
loss function L that quantifies the homogeneity datasets that result from said split.
This node-wise loss consists of a separate ranking loss Lrank and regression loss
Lregr. These losses utilize the basic ranking and regression loss functions.

To comprehensively explain this process, we explain the components in reversed
order. We first introduce the structure of basic loss functions (section 3.6.1). Then
regression loss functions (section 3.6.2), and ranking loss functions (section 3.6.3)
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that are utilized by Lrank and Lregr are introduced. Building on that, it is explained
how those loss functions are used to measure the homogeneity of a dataset in terms
of ranking Lrank and regression Lregr (section 3.6.4). Lastly, it is explained how
these homogeneity losses are combined to one loss L (section 3.6.5).

3.6.1 Basics on Loss Functions

In essence, loss functions are used to evaluate the error of a prediction. Given a
ground truth (correct) label y œ Y and a predicted label ŷ œ Y , a loss function

¸ : Y ◊ Y æ R+
0 (3.14)

assigns a value that quantifies the prediction’s quality. Depending on the space
of possible labels, Y one deals with different kinds of machine learning models.
As explained earlier, this thesis focuses on a combined approach of ranking and
regression. In regression, it holds that the labels are real numbers.

Y = R (3.15)

The space of labels Y equals the set of possible rankings over k labels in label
ranking. This can be formalized as the set of all permutations over k labels. Since
one is interested in a ranking of k algorithms, the labels are algorithms in this thesis.
If one were to compare the performance of three algorithms A1, A2 and A3 on a
problem instance I, a possible ranking ·I would be

A1 ºI A2 ≤I A3 (3.16)

and the space of possible rankings would be all possible orders of A1, A2, and A3. It
is important to note that two algorithms might also be tied in performance.

3.6.2 Regression Loss Function

One of the most basic loss functions for regression is the squared error [Bot18]

¸ : R ◊ R æ [0, 1] (3.17)

¸(y, ŷ) = (y ≠ ŷ)2 (3.18)
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which is the squared difference of the ground truth value y and a predicted value
ŷ. This is the only regression loss we consider in this thesis. However, since our
training data has the structure described in Equation 3.4, one can not directly apply
this loss in the context of hybrid decision trees (section 3.6.4).

3.6.3 Ranking Loss Function

Ranking losses are less intuitive than regression losses. Therefore, the explanation
of ranking losses is divided into three parts:

1. The label ranking notation is introduced.

2. An example ranking loss is given.

3. The ranking losses utilized for hybrid decision trees are explained.

Label Ranking Notation

As mentioned above, we deal with label ranking in this thesis. Here one transforms
the label of each instance into a ranking. The main idea is that given a set of labels
(algorithms), one orders these labels (algorithms) according to some order (the
performance measure mÕ

i(In)), where the label (algorithm) with the i-th highest
rank is the i-th best label (i-th best-performing algorithm on In).
As a ranking loss disregards exact performance information, a separate ranking
notation based on permutations is introduced as a level of abstraction. These
ranking notations transform the problem into a ranking problem. This leads to a
simplification in notation as one does not deal with performance information.
Given a node N we have a dataset DN ™ I ◊Rm. From (In, yn) œ DN , one derives a
ranking ri of algorithms by ordering them by Yn from highest to lowest performance.
This ranking can be formalized as a permutation ·n over the algorithms

A = {A1, ..., Ak} (3.19)
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for each instance In. Here ·n(l) = j means that Al has the jth best performance on
instance In [Hül+08].

Tie Handling in Ranking Calculation However, there might be algorithms Ai, Ai +
1, ..., Aj for which it holds mÕ

i(In) = mÕ
i+1(In) = ... = mÕ

j(In) for some problem
instance In. Let Ai≠1 be the worse performing neighbor of them and Aj+1 be the
better performing neighbors then, the rank of the tied algorithms is

·(Ai) = ·(Aj) = |·(Aj+1) ≠ ·(Ai≠1)|
j ≠ i

(3.20)

set to the mid rank of the tied out algorithms since this is expected to give the best
quality of models [Tor+22]. This is illustrated by the following example: Given 4
Algorithms A1, ..., A4 with performances

mÕ
1(In) = 1

mÕ
2(In) = 7

mÕ
3(In) = 7

mÕ
4(In) = 12

on some instance In the resulting ranking of algorithms would be:

·n(1) = 1
·n(2) = 2.5
·n(3) = 2.5
·n(4) = 4

However, we introduce an exception to the method of tie handling: If the tied
algorithms have the worst performance, they are not set to the value explained
above, but to the worst possible ranking. This means that if one modified to above
example to have the performances

mÕ
1(In) = 1

mÕ
2(In) = 12

mÕ
3(In) = 12

mÕ
4(In) = 7
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the calculated ranking would be

·n(1) = 1
·n(2) = 4
·n(3) = 4
·n(4) = 2

This is done since creating the ranking as explained in the beginning would result
in

·n(1) = 1
·n(2) = 3.5
·n(3) = 3.5
·n(4) = 2

A2, and A3 getting a ranking position that is better than the worst possible ranking.
This is unintended as a tie in ranks for the worst performing algorithms is likely
caused by the algorithms not finishing their calculation before the cutoff threshold
C is reached.

Example Ranking Loss

As explained in section 3.6.1, loss functions are based on the idea of quantifying the
difference between a correct ranking y and a predicted ranking ŷ. For example if
one has 2 rankings

·1 = (a º b º c) (3.21)

(3.22)

and

·2 = (c º a º b) (3.23)

and uses the minimal number of transpositions as a loss loss function that measures
of similarity of the rankings, the loss ¸(·1, ·2) is 2.
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Ranking Error Loss Functions

As mentioned above, there are ranking error loss functions that are loosely based
on the idea of calculating a distance of two rankings ·, ·̂ . This is done by explor-
ing the difference between the ranks ·(i), ·̂(i) for all candidate set algorithms A
[HF10]. The ranking errors considered in this thesis include the Spearman’s rank
correlation

¸ : P ◊ P æ N (3.24)

¸(·, ·̂) =
mÿ

i=1
(·(i) ≠ ·̂(i))2 (3.25)

and the Spearman’s foot rule

¸ : P ◊ P æ N (3.26)

¸(·, ·̂) =
mÿ

i=1
|(·(i) ≠ ·̂(i))| (3.27)

which are the sum of absolute/squared rank distances. However, we use a slightly
modified version of these errors that are scaled to [0, 1] to reach similar behavior in
our loss functions (section 3.5).
For the spearman rank correlation, we use

¸(·, ·̂) =
mÿ

i=1

(·(i) ≠ ·̂(i))2

(k ≠ 1)2 (3.28)

and for the spearman footrule, we use

¸(·, ·̂) =
mÿ

i=1

|(·(i) ≠ ·̂(i))|
k ≠ 1 (3.29)

as two rankings ·(i) and ·̂(i) differ by at most k ≠ 1 since 1 is the best possible rank
and k is the worst possible rank.
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Another loss function used in this thesis is the number of discordant pairs [Agr10]
of the Kendalls Tau Measure

¸ : P ◊ P æ N (3.30)

¸(·, ·̂) = |U | (3.31)

U = {(i, j) : 1 Æ i < j Æ k, ·(i) < ·(j) · ·̂ Õ(i) > ·̂ Õ(j) (3.32)

‚·(i) > ·(j) · ·̂ Õ(i) < ·̂ Õ(j)} (3.33)

that can easily be scaled to [0, 1]

¸(·, ·̂) = |U |
k·(k≠1)

2
(3.34)

by dividing |U | by the amount of considers pairs (i, j).

The downside of these loss functions is that they disregard the entire runtime
information given in the context of algorithm selection. This problem has already
been explained in chapter 1 and motivates the usage of ranking loss functions that
consider the difference in runtime.

Squared Hinge Ranking Loss The following distance-based loss we consider is the
squared hinge ranking loss [Han+20]. This loss function combines the comparison
of ranking with runtime information. To that end, a new function vi

vi : I æ R (3.35)

is introduced with vi(In) resembling the performance mÕ
i(In) given by the training

dataset of Ai on an instance In. For this vi we use the negative runtime:

vi(In) = ≠mÕ
i(In) (3.36)

The loss is then defined as

¸ : P ◊ P æ R (3.37)

¸(·, ·̂) = 1
�

ÿ

(i,j):·(i)<·(j)
l(‘ ≠ (vi(In) + vj(In))) (3.38)

l(x) = (max(0, x))2 (3.39)
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where � is the number of pairs (i,j) over which the sum is calculated.
The intuition of this distance metric is to iterate over all pairs (i,j) where Ai should
perform better than Aj according to · . If this is the case, the function l will yield
0. However, if this is not the case, it would yield a positive value. The value ‘

is introduced as without it equal performance of vi(In) and vj(In) would not be
penalized even though it should be as ·(i) < ·(j).

Position Error Loss Function The position error is based on the idea of measuring
the difference between two rankings ·, ·̂ solely based on the best ranked algorithms
in · and ·̂ . To that end, let Ê be the index of the best-ranked algorithm AÊ in ·c

(note · is the ground truth ranking)

Ê := ·≠1(1) (3.40)

then the Position error is

¸(·, ·̂) = ·̂(Ê) ≠ 1 (3.41)

which can be rewritten as

¸(·, ·̂) = ·̂(Ê) ≠ ·(Ê) (3.42)

This error can be modified so that it also takes the performance of algorithms into
account. This results in the loss

¸ : N ◊ N æ [0, 1] (3.43)

¸(·, ·̂) = YN·̂(Ê) ≠ YN·(Ê) (3.44)

where YNi is the average performance of Ai on on the instances that are in the
dataset that results of the split.

3.6.4 Utilizing Losses to Quantify the Spread of Labels

Since our instance labels are more complicated than a real number, and losses are
used to measure the homogeneity of a dataset that results from a split, loss functions
as simple as the squared error (Equation 3.17) or spearman rank correlation (Equa-
tion 3.25) are not directly applicable to the previously introduced binary decision

26 Chapter 3 Methodology



trees.
Instead, the given losses are not used to evaluate the homogeneity of a dataset. One
can view this as fitting a local model on a resulting dataset and then using the loss
functions L to quantify the quality of a prediction made by the local model.

Application of Regression Losses

In the case of regression, one uses the node label from section 3.4 as the model we
fit on and then calculates the average squared error (Equation 3.17)

LMSEi : Rk ◊ Rk æ [0, 1] (3.45)

LMSEi(Y, Ŷ ) = 1
k

ÿ

iœ{1,...,k}
(Yi ≠ Ŷi)2 (3.46)

over the set of algorithms {A1, ..., Ak}. Ŷ denotes the node label (section 3.4) and
Y one instance’s label.

Lastly, we average over all of these errors

Lregr(YDN , ŶN ) = 1
|DN |

ÿ

Y œYDN

LMSEi(Y, Ŷ ) (3.47)

with YDN denoting the set of labels in DN . This results in the regression loss used in
this thesis. The same was is used in “Hybrid Ranking and Regression for Algorithm
Selection” (section 2.2.4).

Application of Ranking Losses

As mentioned in section 3.6.4, the ranking and regression losses are calculated
separately for both datasets that result from a split. One can view quantifying a
dataset’s homogeneity by first fitting a local model and then calculating the average
loss. This is realized by calculating a consensus ranking from the rankings in
the resulting dataset and then quantifying the quality of this consensus label as a
representative label for the dataset with the ranking loss functions introduced in
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section 3.6.3.
In this thesis, we calculate the consensus ranking with Borda’s Method.

Bordas’s Method

The general idea of Borda’s method for rank aggregation [Lin10] is, given ranking
permutations ·1, ..., ·k, one calculates a Borda Score Bl for each algorithm Al œ A
that represents Al’s performance on on the dataset. Then one orders those resulting
values to get a new ranking over B1, ..., Bk. We call this ranking consensus ranking.
The calculated consensus ranking is referred to as ·c, and the space of permutations
for a node N is called PN .

The critical part of this process is the calculation of Borda Scores. One can do this in
many different ways. The basic idea is that we introduce a function f

f : R|DN | æ R (3.48)

that maps the performance of one algorithm on all instances to a single value. The
resulting value is then called Borda Score.

Bl := f(·1(l), ·2(l), ...·|DN |(l)) (3.49)

Possible functions f would be the following:

f(·1(l), ..., ·|DN |(l)) = median(·1(l), ...·n(l)) (3.50)

f(·1(l), ..., ·|DN |(l)) = avg(·1(l), ...·n(l)) (3.51)

f(·1(l), ..., ·|DN |(l)) = (
|DN |Ÿ

i=1
·i(l))

1
|DN | (3.52)

f(·1(l), ..., ·|DN |(l)) =
|DN |ÿ

i=1
mÕ

l(Ii) (3.53)

In the case of tied Borda Scores, these ties are handles as explained in para-
graph 3.6.3.
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Calculation of the Ranking Loss The resulting ranking loss

Lrank : P |DN | ◊ P æ R (3.54)

with P |DN | as the set of all possible rankings over DN ’s instances. The loss is then
calculated averaging over the instance-wise losses (with one loss function from
section 3.6.3) of all instances from the dataset.

Lrank(PN , ·c) = 1
|PN |

ÿ

·œPN

¸(·, ·c) (3.55)

as the average distance of rankings · to ·c.

3.6.5 Combined Ranking and Regression Split Loss

An intuitive approach to quantify the homogeneity of a node’s dataset is combining
the given ranking and regression losses (section 3.6.4). To to that the ranking and
regression losses are calculated separately. That results in:

L(DN ) = Lrank(YDN , ŶN ) + Lregr(PN , ·c) (3.56)

However, that would implicitly follow the assumption that we want ranking and
regression to have the same impact on the loss. Since this might not be the case, we
introduce a parameter ⁄ and build a convex combination

L(DN ) = ⁄ · Lrank(YDN , ŶN ) + (1 ≠ ⁄) · Lregr(PN , ·c) (3.57)

with a ⁄ œ [0, 1]. Then bigger (smaller) values of ⁄ lead to a bigger (smaller) impact
of the ranking error making our system more flexible [Han+20].

However, one needs to be careful in choosing the loss functions as if one were to
choose an arbitrary popular loss function, their behavior may impact L(DN ) in
an unintended way [Han+20] since losses that reach different co-domains might
outperform one another (cf. section 5.3). Due to this, all loss functions utilized in
this thesis are scaled to the interval [0,1].
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3.7 Stopping Criterion

There exists a wide variety of stopping criteria one can choose. Some focus on the
entire tree (like stopping when a certain depth is reached), and some are defined
node-wise. The most trivial of such stopping criteria is stopping once a node N whose
dataset has only one element is reached. However, this would lead to needlessly
large decision trees and overfitting. As a result, one aims to have more than one
instance in a leaf node. Therefore, we will evaluate the following stopping criteria:

1. Given the performance yi, yj of two algorithms Ai, Aj œ A, all instances rank
the performance either yi ≤ yj or yj ≤ yi.

2. Given the performance yi, yj of two algorithms Ai, Aj œ A, at least x% of the
instances rank the performance either yi ≤ yj or yj ≤ yi.

3. The maximal depth of the tree is n for some n œ N. However, a node that is at
depth n will not be split further. Note that two hybrid decision trees one with
max depth n and one with max depth n + 1 with otherwise equal configuration
have the same structure up to depth n.

4. The dataset reaches a certain homogeneity. To that end, one calculates the
loss of DN as explained in Equation 3.57 and if it is under a threshold X, the
stopping criterion is reached.

Additionally, a new parameter min_sample_split is introduced. Nodes that hold less
than min_sample_split instances are not split further to avoid unreasonably small
datasets.
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Goals and Research

Questions

4

This thesis explores how well the approach of hybrid decision trees performs com-
pared to other algorithm selection approaches. To that end build hybrid decision
trees on top of the evaluation framework used in the evaluation of survival forests
[Tor+20] and then discuss the performance of hybrid decision trees. Additionally
we compare the performance of hybrid decision trees to other hybrid models from
“Hybrid Ranking and Regression for Algorithm Selection” [Han+20].

4.1 Mandatory Goals

The first goal of the thesis was the implementation of hybrid decision trees. These are
implemented hybrid decision trees as a versatile model that is shown in Figure 4.1.

Fig. 4.1.: Structure of the hybrid decision trees, whose implementation is a goal of this
thesis. On the left side of the figure is the hybrid decision tree. With each step
to the right different components are introduced. These components are always
part of the component to their left and can be split into different subcomponents
themselves.

On the left side one can see that a hybrid decision tree needs three components:
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1. a node label

2. a stopping criterion

3. a splitting criterion

While all of these components can be implemented in various ways we fixed one
node label (section 3.4). The other components (stopping criterion and splitting
criterion) offer different configraution options. The stopping criterion is not further
decomposed but the splitting criterion is build from three components

• Regression Loss

• Ranking Loss

• ⁄

that determine the loss of a split.

In addition to the binary decision tree, a data preprocessing was implemented that
deals with incomplete labels as described in Equation 3.4. Here it was made possible
to use different values for µ.

4.1.1 Evaluation of Hybrid Decision Trees

After completing the implementation as described above, there are various possible
configurations of decision trees. To find well-performing configurations the next
goal was an evaluation of different component configurations. To that end the data
is split into a training dataset Dtrain, and a testing dataset Dtest (The process of
training and testing a model is is further explained in section 5.1.). For evaluation,
one uses the trained model to predict labels for all instances in Dtest. Then the
quality of these predictions is quantified with the metrics below.
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Kendall’s Tau - b

The idea of Kendall’s Tau has already been introduced in 3.6.3. However, this
explanation was very informal and reduced to the number of discordant pairs. The
Kendall’s Tau-b [Agr10] introduced here is a modification of the standard Kendall’s
Tau that also works well with tied datapoints. The calculation of calculating Kendall’s
tau - b measure for two rankings (that can be calculated from the label given by
the dataset Dtest and the predicted label as explained in section 3.6.3) can best be
described in 2 steps: One starts by extracting the pairs

P = {(i, j) œ N2 : 1 Æ i < j Æ k} (4.1)

that are used to compare the two rankings · , ·̂ .
Then the concordant pairs C and discordant pairs D are collected and counted.
The concordant pairs are all pairs

C = {(i, j) œ P :·̂(i) < ·̂(j) · ·(i) < ·(j)‚ (4.2)

·̂(i) > ·̂(j) · ·(i) > ·(j)} (4.3)

that are ordered in the same way in ·̂ and · .
The discordant pairs are all pairs

D = {(i, j) œ P :·̂(i) < ·̂(j) · ·(i) > ·(j)‚ (4.4)

·̂(i) > ·̂(j) · ·(i) < ·(j)} (4.5)

that are ordered differently in ·̂ and · .

The Kendall’s Tau - b is calculated as

·b(·̂ , ·) = |C| ≠ |D|


(|P | ≠ t·̂ ) + (|P | ≠ t· )
(4.6)
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whereas t·̂ is the amount of algorithms tied in ·̂ and t· is the amount of algorithms
tied in · .
The values calculated are between ≠1 and 1. In more detail:

·b(·̂ , ·) = ≠1 rankings are inversely correlated

·b(·̂ , ·) œ (≠1, 0) the rankings have a tendency to order algorithms inversely

·b(·̂ , ·) = 0 the rankings are not correlated

·b(·̂ , ·) œ (0, 1) the rankings have a tendency to order algorithms the same way

·b(·̂ , ·) = 1 the rankings are strongly correlated

For this metric we utilized the Kendall’s Tau implementation of the well established
scipy libary: “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”
[Vir+20]. However there are circumstances in which this metric does not return a
valid result. To avoid compromised evaluation results we disregard the Kendall’s Tau
metric from further discussion. This decision is required since there was no time for
another round of evaluation with another Kendall’s Tau implementation that does
not give the same problematic results.

Normalized Discounted Cumulative Gain (NDCG)

NDCG [Val+09] stands for normalized discounted cumulative gain. The idea is
based on optimizing the solutions given by a search engine for a query but can
also be used for other label ranking use cases. In comparison to Kendall’s Tau the
NDCG metric is stronger impacted by algorithms that have a high ranking than by
algorithms that have a low ranking.
Let Itest be the set of instances used to evaluate the NDCG, which is computed as

NCDG(Itest, M) = 1
|Itest|

ÿ

IœItest

Z(I, M(I))
Z(I, ·I) (4.7)

Z(I, ·) :=
ÿ

AœA

2mÕ
I(A) ≠ 1

log2(1 + ·I(A)) (4.8)

with M(I) as the ranking predicted by M and ·I beeing the correct algorithm ranking
for the instance. Note that mÕ denotes the ground truth runtimes.
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Solved Instances

Another critical measure of a model’s prediction quality is the percentage of solved
instances. An instance is solved if the best-predicted algorithm A œ A does not reach
the timeout threshold in its calculation.

Performance Regret

Regret is a fundamental concept of machine learning. The underlying idea is that
one measures the impact of a mistake made by a model M œ M with M being
the space of all possible models [RN02]. Let M(In) be the algorithm with the
best-predicted performance according to the model M for an instance In and Aú be
the best performing algorithm (given by Dtest) for I. Then the performance regret

R : M ◊ I ◊ A æ R+ (4.9)

R(M, I, Aú) = (mú
I(Aú) ≠ mú

I(M(I))) (4.10)

is an indicator of the prediction quality. Note that mú is the performance true
performance. Therefore it is

mú : I, A æ R+ (4.11)

mú(I, A) =

Y
]

[
m(I, A) , m(In, Ai) < C

µ · m(I, A) ,else
(4.12)

Par10

The popular par10 metric

PAR : M ◊ I æ R+ (4.13)

is very similar to the performance regret. However it disregards the ground-truth best
performance. Instead it introduces a parameter x œ R that quantifies performance
decrease that results of feature calculation. This is based on the idea that if we
compare the performance of an algorithm predicted by our model (which is already
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trained) with a randomly chosen algorithm, we should not disregard the effort of
calculating the features needed to utilize this model. It is therefore calculated as:

PAR(M, I)) =

Y
]

[
m(I, A) + x m(I, A) + x < C

10 · C else
(4.14)

4.1.2 Evaluation in Comparison to other Baseline Algorithms

The evaluation with said metrics is expected to show some configurations performing
better than others. The resulting candidate configurations are then evaluated in
comparison to other approaches (single best solver, survival forests, per algorithm
regressor, linear models/quadratic models/neural networks trained with a convex
combination of ranking and regression loss like Equation 3.57) mentioned in sec-
tion 5.2.

4.2 Mandatory Research Questions

In chapter 6 the answers to the following research questions are given;

1. If one fixates all components but one (e.g., ⁄ from Equation 3.57 or the ranking
loss function section 3.6.3), which choice of the corresponding component
performs best?

2. If one fixates all parameters/components but ⁄ and the ranking loss, which
combination of ⁄ and the ranking loss function performs best?

3. Do those best-performing models outperform the other state-of-the-art ap-
proaches (mentioned in section 2.2.3 and section 2.2.4)?

4. Does our approach give a better solution than a standard regression tree
[Bre+84]?

5. How high is the runtime of our new approach (both training and testing)
compared to the other considered approaches in seconds?
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Evaluation 5

The evaluation of hybrid decision trees is divided into five sections:

• In section 5.1 the process of evaluating the quality of a model is explained.

• In section 5.2 an overview of the baselines/state of the art models that hybrid
decision trees are compared to is given.

• section 5.3 describes how preliminary results have led to adaptions to the initial
Hybrid Binary Decision Trees specification (these adaptations are mentioned
throughout the thesis). To that end, changes in the model specification are
presented and evaluated.

• In section 5.4 the quality of different hybrid decision tree components is
assessed.

• This knowledge is then used to propose hybrid decision tree configurations
that perform well on average. These proposed configurations are evaluated in
comparison to other approaches in section 5.5.

5.1 Evaluation Process

To answer whether or not hybrid decision trees are a well-suited model for algorithm
selection, the quality of the model needs to be quantified. The evaluation is done by
assessing the quality of predictions made by hybrid decision trees with an evaluation
loss function (cf. in section 4.1.1). We treat the quality of predictions made by a
hybrid decision tree and the quality of a hybrid decision tree as synonyms.

To give a comprehensive evaluation process overview, it is split into three sections:
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• First, we provide information on the machine(s) used for evaluation (sec-
tion 5.1.1).

• Then, the scenarios used to determine the quality of different models are
introduced (section 5.1.2).

• Lastly, the process of quantifying the quality of a model is explained (sec-
tion 5.1.3).

5.1.1 Virtual Machine(s) Used for Evaluation

To evaluate whether hybrid decision trees are a promising approach for algorithm
selection, we utilized a set of 3 virtual machines that feature the Intel(R) Xeon(R)
E5-2695 v3 @ 2.30GHz CPU with 16 cores and 64GB of RAM.

5.1.2 Choice of Utilized Scenarios

Since one model might perform better/worse depending on the problem domain,
the quality of models is evaluated on scenarios from different problem domains. For
this evaluation, we utilize scenarios from the repository associated with the paper
“ASlib: A Benchmark Library for Algorithm Selection” [Bis+16].

Scnearios # Instances # Unsolved # A # Features C

ASP-POTASSCO 1294 82 11 138 600
CSP-2010 2024 253 2 86 5000

MAXSAT-15-PMS-INDU 601 46 29 37 2100
QBF-2016 1254 241 14 46 900

SAT12-Hand 767 229 31 115 1200
SAT12-INDU 1167 209 31 115 1200
CPMP-2015 527 0 4 22 3600

Fig. 5.1.: Overview of the properties of the used ASlib scenarios. Unsolved refers to
instances where all algorithms are terminated due to exceeding the cutoff limit C.
While SAT12-HAND and SAT12-INDU use the same algorithms and features, they
use different instances.

.
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The sets of scenarios in Figure 5.1 is chosen for two reasons: Firstly the selected sce-
narios cover a wide variety of problem domains. Secondly, they are selected because
the datasets cover various properties such as a scenario’s amount of instances, set of
candidate algorithms, the set of candidate features, and the cutoff value C. Further
scenario properties are disregarded here.

5.1.3 Quantifying a Model’s Quality

As mentioned above, the evaluation process is divided into the training and testing
of a model.
In addition, to this two-step process, one could utilize feature selection or other
preprocessing algorithms that would increase a model’s prediction quality [KKP].
These algorithms modify the feature space to evaluate models with well-suited
features. An example of a preprocessing algorithm is disregarding features that have
little information on the performance of an algorithm (e.g., if all instances have the
same feature value).
We ignore these preprocessing algorithms as they introduces another layer of ab-
straction that increases the difficulty of analyzing a model’s quality. Using them, one
would need to answer whether the quality difference between the two models is
rooted in their functionality or the modified feature space.

10-fold cross validation The data given by a scenario is transformed into training
and testing datasets with 10-fold (k-fold) cross-validation [RN02]. Since the goal
is to test a model’s quality on each instance from the scenario, we need to have
several rounds of training and testing (one does not want to test a model on an
instance used for training). Therefore, there are are 10 (k) separate rounds of
evaluation. In each of these rounds the dataset is split into one dataset for training
Di

train and one dataset for testing Di
test (i œ {1, ..., 10}). The resulting trained model

of round i is called Mi. It is tested with the instances from Di
test. The testing is done

by querying Mi for predictions with every instance from Di
test. The quality of the

predictions is then quantified the metrics mentioned in section 4.1.1. After 10(k)
training rounds, the quantified quality of all used testing instances is averaged as
the model’s performance on the scenario.
In detail, this means that the scenario is randomly split into 10 folds D1, ..., D10

for separate rounds of evaluation. In the i’th round of evaluation the model M i is
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trained with Di
train = t

jœ{1,...,10}
i”=j

Dj and evaluated with Di
test = Di. The quality of a

model according to an evaluation function L is then evaluated as:

L(M, D) := 1
10

nÿ

i=1

1
|Di

test|
ÿ

(In,yn)œDi
test

L(M(In), yn)) (5.1)

Here L refers to one of the loss functions mentioned in section 4.1.

5.2 Baseline Overview

In the following sections, hybrid decision trees are compared to other approaches to
determine whether or not/on which scenarios hybrid decision trees are a promising
approach for the problem of algorithm selection. These baselines are the single best
solver (sbs), the per algorithm regressor, survival forests, and preexisting models
trained with a hybrid loss function. This section aims to give a basic understanding
of their functionality.

5.2.1 Single Best Solver

For each dataset of a scenario, one could choose the algorithm with the best average
performance for all instances in Dtrain. This algorithm would be the single best
solver (sbs).

sbs : I æ A (5.2)

sbs(In) = arg max
AœA

ÿ

InœDtrain

mÕ(In, A) (5.3)

This solver has the downside of not using any correlation between an instance’s
features and its performance. In fact, in chapter 1 we mentioned the gains that can
be made by not using the sbs. Therefore, an approach for algorithm selection should
only be considered if the evaluation results in the approach performs better than the
single best solver.
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To give a baseline for ranking, we use a generalization of the sbs that provides
information on all algorithms. This generalized sbs provides a ranking based on the
algorithms’ average performances.

Note that sbs has the same functionality as hybrid decision trees of depth 0 since the
node label of hybrid decision trees (section 3.4) consists of the average algorithm
performances. A ranking is constructed from that label by ordering the average
performances. One can view hybrid decision trees as an extension of the sbs since
every leaf has the same functionality as the sbs.

5.2.2 Per Algorithm Decision Tree Regressor

In section 3.1 it is explained how one can utilize regression for algorithm selection.
The per algorithm regressor is an implementation of this idea. One trains a separate
regression tree [Bre+84] for each algorithm to make runtime predictions mÕ. Then
one either generates a ranking from these predictions or the algorithm with the best
prediction runtime. The model utilized here is a regression tree with the scikit-learn
[Ped+11] implementation (which is an implementation of the approach proposed
in Classification and Regression Trees).

5.2.3 Survival Forests

As mentioned in section 2.2.3, a survival forest consists of various survival trees.
These can be configured in various ways. In this thesis, we limit our evaluation to a
comparison with the expectation survival forest since all survival forests introduced
in “Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on
Survival Analysis”[[Tor+20]] show similar performances.

5.2.4 Preexisting Hybrid Ranking and Regression Models

The preexisting hybrid ranking and regression models are either a linear model,
quadratic model, or feed-forward neural network. These are trained with a convex
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combination of a regression loss (like ours) and a ranking loss. The paper that
defined this approach is further explained in section 2.2.4.

5.3 Hybrid Binary Decision Tree Specification
Adaptations

In the proposal’s preliminary hybrid decision tree, neither scaling ranking losses
(c,f, section 3.6.3) nor scaling the given data on the algorithm performances (c.f.
Equation 3.7) was considered. Due to that, we faced the problem of the regression
error and the ranking error reaching vastly different values. The degree of mismatch
is dependent on the given scenarios since the regression error is dependent on
e.g. the cutoff value C and the ranking error is dependent on e.g. the number of
considered algorithms.

If one error reaches much larger values than the other, the loss function

L(DN ) = ⁄ · Lrank(YDN , ŶN ) + (1 ≠ ⁄) · Lregr(PN , ·c) (5.4)

might mainly be impacted by either the ranking or regression loss. If the loss is then
evaluated for ⁄ œ {0.1, .., 0.9} but

x · Lrank(YDN , ŶN ) < Lregr for some large x (5.5)

it can happen that the ranking loss does not impact the choice of split. In that case,
we say that the regression loss overpowers/outperforms the ranking loss.
If a split is chosen based on both the ranking and the regression loss, the loss (quality
of a hybrid decision tree is different than for ⁄ = 0 and ⁄ = 1) is called a true
combined loss.

This mismatch is visualized in Figure 5.2. This figure shows the comparison the
quality of two hybrid decision trees trained on ’ASP-POTASSCO’ with the NDCG. It
compares a hybrid decision tree trained without any scaling and a hybrid decision
tree that uses a scaled ranking loss function and scaled performance data. The quality
of both models is evaluated for ⁄ œ {0, 0.1, ..., 0.9, 1}. The NDCG performance is on
the y-axis, and different ⁄ values are on the x-axis. As explained, different values of ⁄
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should result in the model making different predictions. These different predictions
would then result in the models reaching different scores. However, this is not the
case for the unscaled spearman correlation. Here, the evaluated model quality is
equal for ⁄ œ {0, 0.1, ..., 0.7}. It only changes if ⁄ > 0.7. This indicates that fitting
a tree with the training dataset will result in the same tree for all other values of
⁄ < 0.7 caused by the regression error overpowering the ranking error.
The hybrid decision tree trained with scaled performance data and a scaled loss
function behaves differently. For every other ⁄, the evaluated quality changes. The
general behavior indicates that the regression and ranking error reach comparable
large numbers.

Fig. 5.2.: Comparison of two different hybrid decision trees. One tree is trained according
to the preliminary specification. The other tree is trained with [0,1] scaled
performance data and a [0,1] scaled loss functions.

The result of the regression error outperforming the ranking error is similar or worse
for the following scenarios:

• QBF-2016

• ASP-POTASSCOf

• MAXSAT15-PMS-INDU

• SAT12-INDU

• CPMP 2015
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From this observation, one can conclude that an evaluation of hybrid decision trees
without the given modifications is not as viable to analyze the performance of hybrid
decision trees.

Note that this issue only exists for loss functions that are not based on the perfor-
mance of algorithms:

• spearman rank correlation

• spearman footrule

• umber of discordant pairs

Therefore, the modified position and squared hinge errors do not have the same
problem. However, in this thesis it is not explored how hybrid decision trees with
unscaled performance data perform for these losses.

All hybrid decision trees that are trained with the modified position error are not
affected by the scaling of performance data. This is because the modified position
error is solely based on performance data. Therefore, the regression and modified
position errors use the same performance data. If one were to multiply the overall
loss with µ · C, this factor can be propagated into the final simple losses introduced
in section 3.6.1. Since µ · C would be multiplied to all losses the best split would
not be impacted by this..

5.4 Component-Wise Evaluation

As mentioned in section 4.1, there are various hybrid decision tree configurations
possible that utilize the components introduced in chapter 3. To find well-performing
configurations, we evaluate the quality of different components in an ablation study.
This means that we compare the quality of various hybrid decision tree models that
only differ in one component. This does not have to result in finding the best hybrid
decision tree configurations since not every combination of components is tested.
However, if we proceed this way, we can find viable candidate hybrid decision trees.
The component wide discussion is split into the following sections:
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1. First, the impact of different split loss configurations (introduced in sec-
tion 3.6.4) have on the model is discussed. To that end, the quality of hybrid
decision trees trained with different ranking losses and ⁄ values is evaluated
(section 5.4.1).

2. Then, it is studied which borda score is best to determine a consensus ranking
(section 5.4.2).

3. Afterwards, we study how different stopping criteria impact the quality of
hybrid decision trees (section 5.4.3).

4. Lastly, we study the impact of different µ values for censored labels in the data
design (section 5.4.4).

5.4.1 Loss Evaluation

As mentioned above, there are different configuration options for hybrid decision
trees. In this section, it is discussed how trees differ that are trained with different
combinations of ⁄ and Lrank. The component choice mainly impacts the choice of
the best splitting feature and point since the node-wise loss function

L(DN ) = ⁄ · Lrank(DN ) + (1 ≠ ⁄) · Lregr(DN ) (5.6)

is dependent on just ⁄, the the regression loss Lregr, and Lrank. To find the best
configuration of L we evaluate different choices of ⁄ and ranking losses. Note that
for ⁄ = 0 the hybrid decision tree solely uses the regression loss and for ⁄ = 1 it
solely uses the ranking loss.
To evaluate which combination of ⁄ and Lrank performs best, we set all other
components to a fixed configuration:

• The borda function is fixed to the arithmetic mean ranking.

• The stopping criterion is fixed to the maximal depth of 3.

• The timeout penalty is fixed to µ = 1.
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These components are chosen for their simple behavior. Additionally, we did not
want to use the stopping criterion that is based on the node-wise loss since this is
dependent on the loss as well.

Since the quality of models is dependent on the underlying scenario, scenarios for
which hybrid decision trees are a good/poor fit are discussed separately. For this
evaluation, we consider hybrid decision trees to be a good fit for a scenario if they
outperform the single best solver for more than one choice of ranking loss and ⁄

according to more than one evaluation metric.
For both good and bad scenarios, we discuss one scenario in detail. In the scenario-
wise model discussion, we focus on the quantified performance with the metrics
introduced in section 4.1. First, we use the metrics that are solely based on the best
performing algorithm:

• Par10

• Performance regret

• Percentage of unsolved instances

Then, we discuss the quality of an entire ranking prediction with the NDCG metric.
Lastly, we make conclusions on the overall model performance on the scenarios.
This results in the structure shown in Figure 5.3.

...metric

performance trees perform
well

trees perform
poorly

best algorithm... page 48 page 52

entire ranking... page 50 page 55

Fig. 5.3.: Structure overview over the loss evaluation.

The evaluation’s results are visualized in figures of the structure shown in Figure 5.4.
Each figure shows the quality of different hybrid decision tree configurations and
the sbs based on one metric from section 4.1.1. The ⁄ values are on the x-axis, and
the measured quality according to an evaluation metric is on the y-axis. The graphs
illustrate the performance of different hybrid decision tree configurations. They
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are shown in different colors. The lines in between evaluation points are just for
visualization and do not imply a model’s performance between evaluation points. In
addition, to the performance of hybrid decision trees, the sbs baseline is shown as a
thick line.

Fig. 5.4.: Example figure that compares the quality of hybrid decision trees trained with
different ranking losses to the single best solver

Evaluation Results for Scenarios on which Hybrid Decision Trees Perform
Well

As mentioned above, there are scenarios for which some hybrid decision tree config-
urations of Lrank and ⁄ perform well in comparison to the single best solver (sbs).
These scenarios are:

• CPMP-2015

• CSP-2010

• QBF-2016

• SAT12-INDU

The scenario that is chosen to represent the scenarios on which hybrid decision trees
perform well is SAT12-INDU. It is chosen for several reasons:
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• It is a good representation of models trained with spearman footrule and the
number of discordant pairs.

• It shows interesting results for hybrid decision trees trained with the modified
position error. On all other scenarios, it does not rival the best performance.

Evaluation Discussion of Results with Metrics that Focus on the Quality of the Best
Predicted Algorithm on SAT12-INDU In Figure 5.5, the impact of different choices
of ⁄ and Lrank on the prediction quality is shown. Here, it is evaluated with the
Par10 metric. The noteworthy results of this evaluation are:

• All hybrid decision trees have the same prediction quality at ⁄ = 0.

• The best hybrid decision tree trained with the number of discordant pairs loss
has ⁄ = 1. However, the hybrid decision trees trained with this loss have a
local minimum for ⁄ = 0.8.

• he best hybrid decision tree trained with the spearman rank correlation has
⁄ = 0.

• All other losses perform best for some ⁄ œ {0.1, ..., 0.9}.

• At all evaluation points the measured performance is worse than the single
best solver.

• The best performance is given by the modified position error and ⁄ = 0.6.

• All hybrid decision trees trained with the spearman footrule have the same
performance for ⁄ Ø 0.5. This indicates that the spearman footrule overpowers
the regression loss for ⁄ Ø 0.5.

• The hybrid decision tree trained with the spearman rank correlation performs
poorly for all ⁄ Ø 0.1. However, there is a local best performance for ⁄ = 0.9.
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Fig. 5.5.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario SAT12-INDU. For
reference, the single best solver is also shown in the figure. The evaluation is
done with the metric Par10.

The bad performance of all hybrid decision tree configurations according to the
Par10 error, indicates that hybrid decision trees perform poorly on SAT12-INDU. This
result contrasts the performances evaluated with the performance regret and the
percentage of unsolved instances. These are shown in Figure 5.6 and Figure 5.7. The
main difference is that the figures indicate that hybrid decision trees are viable for
SAT12-INDU for some configurations. In detail one can see the following results:

• If one compares the evaluation resutls of Figure 5.5 with these two graphs
the hybrid decision trees that are trained with the same loss functions show
similar differences in quality for ⁄ ‘æ ⁄ + 0.1. However, the general quality is
much better.

• The hybrid decision tree trained with the modified position error beats to sbs
for ⁄ œ {0.1, 0.6, 0.7, 0.8}.

• The hybrid decision tree trained with the number of discordant pairs beats the
sbs for ⁄ = 1.
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Fig. 5.6.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario SAT12-INDU. For
reference, the single best solver is also shown in the figure. The evaluation is
done with the performance regret metric.

Fig. 5.7.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario SAT12-INDU. For
reference, the single best solver is also shown in the figure. The evaluation is
done with the metric Percentage of Unsolved Instances.

This contrast might be caused by par10 being impacted by the cost of calculating
features into account while the performance regret and percentage of unsolved
instances are not. For other scenarios, the difference between par10 and the perfor-
mance regret is not noticeable.
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The evaluations on other scenarios are found in the appendix. They show that for
most hybrid decision tree configurations, the best performance is given by a hybrid
loss and that there are configurations for which they beat the sbs. Additionally, the
hybrid decision trees trained with the spearman footrule have the highest quality for
some lambda on most scenarios.

Evaluation Discussion of Results that Utilize the Metric NDCG on SAT12-INDU The
results of the evaluation with NDCG are shown in Figure 5.8. If one compares
this result with Figure 5.6, the evaluated quality of hybrid decision tree models is
very similar but mirrored (different values on the y-axis due to different metrics).
However, the sbs is not outperformed by any configuration. Almost all hybrid
decision trees reach the best performance for some 0 ”= ⁄ ”= 1. The hybrid decision
tree that is trained with the number of discordant pairs and ⁄ = 1 almost beats the
single best solver.

Fig. 5.8.: Comparison of the quality of different hybrid decision tree configurations. They
are built with different values for ⁄ and Lrank on the scenario SAT12-INDU. For
reference, the single best solver is also shown in the figure. The evaluation is
done with the metric NDCG.

Interpretation of Results From the evaluation of different hybrid decision trees on
this scenario and the other scenarios (figures in appendix), one can conclude that
even on the scenarios where some hybrid decision trees rival the sbs, very few hybrid
decision tree configurations (with the fixed components) perform well compared
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to the sbs. Additionally, the best losses are the spearman footrule, the number of
discordant pairs, and the modified position error.

Evaluation Results for Scenarios Where Hybrid Decision Trees Perform
Poorly

In contrast to the scenarios given above, hybrid decision trees have a relatively poor
performance on the following scenarios:

• ASP-POTASSCO

• MAXSAT15-PMS-INDU

• SAT12-HAND

As an example, we discuss the evaluation on MAXSAT15-PMS-INDU.

Evaluation Discussion that Utilizes Metrics that Focus on Quality of the Best Pre-
dicted Algorithm on MAXSAT15-PMS-INDU One scenario, on which hybrid decision
trees perform relatively poor, is MAXSAT15-PMS-INDU. In Figure 5.9, Figure 5.10,
Figure 5.11 the following results can be deduced:

• The figures that show the performance with the par10, performance regret,
and percentage of unsolved instances metric, all are very similar.

• All hybrid decision tree configurations make the same predictions for ⁄ = 0.

• For all ranking losses, the best hybrid decision tree is given for ⁄ > 0.

• The hybrid decision tree configurations trained with the spearman footrule
have a similar prediction for ⁄ Ø 0.1. This might indicate that the ranking loss
outperforms the regression loss for any ⁄ other than 0.

• Only for hybrid decision trees trained with the number of discordant pairs, the
best model quality is evaluated for ⁄ = 1.
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• For hybrid decision trees trained with any other loss than the number of
discordant pairs, the best hybrid decision tree configuration is given by some
⁄ œ {0.1, ..., 0.9}. The number of discordant pairs also has a local minimum at
⁄ = 0.7.

• The best solution is given by the tree trained with the number of discordant
pairs for ⁄ = 1.

Fig. 5.9.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario MAXSAT15-PMS-
INDU. For reference, the single best solver is also shown in the figure. The
evaluation is done with the metric Par10.

5.4 Component-Wise Evaluation 53



Fig. 5.10.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario MAXSAT15-PMS-
INDU. For reference, the single best solver is also shown in the figure. The
evaluation is done with the metric Performance Regret.

Fig. 5.11.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario MAXSAT15-PMS-
INDU. For reference, the single best solver is also shown in the figure. The
evaluation is done with the metric Percentage of Unsolved Instances.

While these evaluations results differ for other scenarios, they are still very similar.
The main difference is that another ranking loss might be the best hybrid decision
tree ranking loss. Additionally, the difference in quality between the sbs the best
hybrid decision tree configuration is larger on other scenarios.
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Evaluation with ’NDCG’ on MAXSAT15-PMS-INDU In Figure 5.12 the following re-
sults can be found:

• As in the evaluation of good scenarios, the results are similar but mirrored
to the evaluation results for metrics that focus on the algorithm with the
best-predicted performance.

• All hybrid decision trees have the same performance for ⁄ = 0.

• The only hybrid decision tree configuration that has the highest prediction
quality for ⁄ = 1, is the Modified Position error. It even outperforms the sbs
for ⁄ = 1. However, for every ranking loss a hybrid decision tree has locally
best performance for some ⁄ œ {0.1, ..., 0.9}.

• All other ranking losses have their best performance for some 0 ”= ⁄ ”= 1.

• This is the scenario where hybrid decision trees trained with the number of
discordant pairs do not perform best for ⁄ = 1.

• The hybrid decision tree trained with the spearman footrule does not make
predictions of the same quality for ⁄ = 0.1 and ⁄ = 0.2. This differs from the
above evaluation.

Fig. 5.12.: Comparison of the quality of different hybrid decision tree configurations. They
are build with different values for ⁄ and Lrank on the scenario MAXSAT15-PMS-
INDU. For reference, the single best solver is also shown in the figure. The
evaluation is done with the metric NDCG.
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Interpretation of Results From the loss evaluation (including figures in appendix
figures in appendix), one can conclude that for scenarios on which hybrid decision
trees generally perform poorly, some hybrid decision tree configurations may rival
the quality of the single best solver according to some losses.

Conclusion of Loss Evaluation

One can conclude that the hybrid decision tree model (with fixed components),
performs either well or poorly compared to the sbs depending on the scenario’s
properties. In general, hybrid decision trees perform better (compared to the sbs) if
scenarios have a lower feature to instances ratio. This can be seen in Figure 5.13.
Three of the four scenarios for which hybrid decision trees perform well have a
feature instance ratio of less than 4.3%. Two out of three scenarios for which hybrid
decision trees perform poorly have a feature to instance ratio of more or equal to
10%.

Scenario Feature to Instance ratio
Some hybrid decision tree

configuration outperforms sbs

CSP 86/2024 ¥ 4.2% yes
CPMP 22/527 ¥ 4.2% yes
QBF 46/1254 ¥ 3.7% yes

ASP-POTASSCO 138/1294 ¥ 10% no
MAXSAT15-PMS-INDU 37/601 ¥ 6.2% partly

SAT12-HAND 115/767 ¥ 15% no
SAT12-INDU 115/1167 ¥ 9.9% partly

Fig. 5.13.: Overview over the impact of scenario’s features to instance ratio and its impact
on hybrid decision trees. The label partly is given if only one hybrid decision
tree configurations outperforms the sbs on one scenario according to one metric

One explanation of this could be the fact that choosing a good split is harder if more
features are considered since each feature increases the number of possible splits
by approximately |D|. This might be an issue since a split is chosen locally. If this
bad split is chosen more than one level above the leaf that the bad leaf result is not
considered. Therefore, this split choice might lead to less homogeneous leafs than
another split would.

The following general conclusions can be made:
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• For most losses, hybrid decision trees perform best if they work with a com-
bined ranking and regression loss (on most scenarios).

• The spearman footrule overpowers the regression error on most scenarios.
This results in some trees of ⁄ Æ 1 having the same quality as a hybrid decision
tree trained solely with the ranking error even though the regression error
should also have an impact.

• The spearman ranking correlation can be disregarded since there is no hybrid
decision tree configured with it that is of high quality (except CSP-2010 with
⁄ = 1). Additionally hybrid decision trees trained with only the ranking loss
(⁄ = 1) generally outperform trees that are trained solely with the regression
loss (⁄ = 0). This is not the case for the spearman rank correlation.

• The squared hinge loss performs poorly on most scenarios and only performs
well on CSP (which has just two algorithms) and can therefore be disregarded
as well. The scenario CSP is prone to giving different results than the other
scenarios because of its differing properties.

• Since hybrid decision trees trained with the number of discordant pairs perform
best for ⁄ = 1 on all scenarios, we disregard this loss as well. Note that since
we did not do a detailed evaluation for ⁄ œ (0.9, 1), it is not proven that the
loss is a bad choice for a convex loss combination.

• The candidate losses for further investigation are the spearman footrule and
modified position error.

5.4.2 Ablation Study on Borda Score

In section 3.6.4, it was mentioned that the split is determined based on the loss of
the resulting datasets. These losses quantify the similarity of the instance labels with
the consensus label.
For the node-wise ranking loss calculation, the consensus label is calculated with
borda’s method (section 5.4.2). Then, an average loss is calculated between the
instance label Y and the consensus label Ŷ . Since the chosen borda function can
impact this loss, the effect of different functions on hybrid decision trees is worth
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exploring.

We evaluated the quality of hybrid decision trees, if they utilize different borda
functions to calculate a consensus label. For this evaluation, we fix all other hybrid
decision tree components:

• The chosen ranking loss is the spearman footrule.

• The spearman footrule is evaluated with ⁄ = 0.7.

• The splitting is stopped if the depth three is reached.

• The performance data is preprocessed with µ = 1.

In Figure 5.14, Figure 5.15, Figure 5.16, and Figure 5.17, the performance of the
mentioned hybrid decision trees is evaluated. In each figure, the performance of
binary decision trees is compared according to one metric. The evaluation results
are shown in a bar diagram with one bar for each borda function. On the y-axis is
the score according to the given metric.

• Firstly, all the Borda Scores give the same evaluation results on the scenario
CSP-2010. This is due to the set of candidate algorithms being of size two
resulting in the likelihood of all trees having the same structure.

• There is only one scenario on which mean ranking performs worst (CPMP-
2015).

• There is only one scenario on which median ranking performs worst (SAT12-
HAND).

• Mean performance performs worst on two scenarios (SAT12-INDU and ASP-
POTASSCO).

• Geometric mean performs worst on two scenarios (QBF-2016 and MAXSAT15-
PMS-INDU).

58 Chapter 5 Evaluation



This evaluation indicates that the mean ranking or the mean performance is the
best borda function for hybrid decision trees. However, this can differ based on the
scenario.

Fig. 5.14.: Comparison of the par10 score reached by hybrid decision trees configured with
the spearman rank correlation, ⁄ = 0.7, µ = 1, a maximum depth of 3, and
different borda functions.

Fig. 5.15.: Comparison of the NDCG score reached by hybrid decision trees configured with
the spearman rank correlation, ⁄ = 0.7, µ = 1, a maximum depth of 3, and
different borda functions.
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Fig. 5.16.: Comparison of the percentage of unsolved instances reached by hybrid decision
trees configured with the spearman rank correlation, ⁄ = 0.7, µ = 1, a maximum
depth of 3, and different borda functions.

Fig. 5.17.: Comparison of the performance regret score reached by hybrid decision trees
configured with the spearman rank correlation, ⁄ = 0.7, µ = 1, a maximum
depth of 3, and different borda functions.
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5.4.3 Ablation Study on Stopping Criteria

In section 3.7 different stopping criteria were introduced. To evaluate the quality of
stopping criteria, all other components are fixed. The fixed components are:

• The chosen ranking loss is the spearman footrule.

• The spearman footrule is evaluated with ⁄ = 0.6.

• The consensus ranking is calculated with the mean ranking.

• The performance data is preprocessed with µ = 1.

These components are chosen since they perform well on average according to the
loss evaluation (section 5.4.1) and borda evaluation (section 5.4.2) above.

The results of the evaluation are very similar according to all evaluation metrics.
Similar to the evaluation of different borda scores, the bar diagram in Figure 5.18
shows the evaluation of hybrid decision trees that utilize different stopping criteria.
On the y-axis are the scores according to performance regret. The bars are grouped
into three types of hybrid decision trees and the single best solver.
In section 3.7 we introduced four stopping criteria for hybrid decision trees. However,
two of them are essentially the same:

1. Given the performance yi, yj if two algorithms Ai, Aj œ A all of the instances
rank the performances either yi ≤ yj or yj ≤ yi.

2. Given the performance yi, yj if two algorithms Ai, Aj œ A at least x% of the
instances rank the performances either yi ≤ yj or yj ≤ yi.

If the algorithms are ranked equally for all instances, they are ordered equally for
100% of them. Therefore, the four mentioned stopping criteria can be reduced
to three. In addition, hybrid decision trees are compared to the single best solver
(sbs). This comparison is interesting because the single best solver makes the same
predictions as does a hybrid decision tree of depth 0 (cf. section 3.7).

5.4 Component-Wise Evaluation 61



Fig. 5.18.: Evaluation of hybrid decision trees that are build with different stopping criteria
according to the metric performance regret. In addition, the hybrid decision
trees are compared to the sbs to explore whether some hybrid decision tree
configurations imitate the sbs.

From the evaluation, one can make the following conclusions:

• There exists a limit –s œ (0, 1] for each scenario s in the given scenarios. The
property that if the loss under threshold method is applied hybrid decision
trees are of depth 0 since the calculated loss is smaller than the threshold. This
holds true for all proposed configurations of the losses.

• Loss under threshold is an inadequate criterion for hybrid decision trees
because it either performs poorly or builds a tree of depth 0.

• Trees of depth 0 give the same predictions as the sbs. This was already
mentioned in section 5.2.1.

• The best stopping criterion on the given scenarios is the maximal hybrid
decision tree depth. It works best with a depth chosen from {1, 2, 3} based on
the scenario. The best depth might be correlated with the number of instances
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in the scenario. This can be seen in Figure 5.19 where the best depth for each
scenario is given. If a dip differs from that, it is given in braces. If one does
not consider the scenarios CSP-2010 and CPMP-2015 (different behavior due
to very few algorithms), there is a tendency for a higher optimal maximum
depth for scenarios with more features. However, this evaluation does not give
enough information for a precise result.

• For most stopping points, the best performance has a local minimum for a
depth in {2, 3, 4} as shown in Figure 5.19.

• For scenarios with very few algorithms (CSP-2010 and CPMP-2015), the best
hybrid decision tree configuration has a maximum depth of 1. However, the
CPMP-2015 scenario has a local minimum of the maximum depth criterion at
depth 5. This result might imply that hybrid decision trees perform better on
scenarios with few algorithms if they have a small depth. However, this is not
a definitive result as we only have two scenarios with few algorithms.

Scenario Instances Best Maximum Depth
ASP-POTASSCO 1294 2

CSP-2010 2024 1 (3)
MAXSAT-15-PMS-INDU 601 1 (4)

QBF-2016 1254 3
SAT12-Hand 767 2
SAT12-INDU 1167 1
CPMP-2015 527 1 (5)

Fig. 5.19.: In this table every scenario is given with the best maximum depth configuration
for hybrid decision trees. If there is a local minimum in the maximum depth for
some other depth it is given in braces.

The main results of this evaluation can be reduced to the fact that hybrid decision
trees are of the highest quality for the stopping criterion maximum depth with the
depth in {1, 2, 3, 4}. This is the best choice since the stopping criteria ’loss under
threshold’, and ’same ranking percentage’ either perform poorly or result in a tree
of depth 0, which is essentially an sbs. For increasing instances, one should also
explore whether increasing the maximal depth results in better performing hybrid
decision trees. One should also explore whether a depth of 1 is generally good for
scenarios with few candidate algorithms.
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The other evaluation metrics support these evaluation results (cf. appendix). Note
that in the par10 score, there are scenarios for which the sbs and hybrid decision
trees of depth 0 do not indicate the same hybrid decision tree quality. This does not
mean that the prediction of the hybrid decision trees and sbs are not the same. This
difference is caused by the fact that the par10 loss is impacted by the time used for
feature generation that hybrid decision trees need (cf. Equation 4.13). However,
since the sbs does not need any features, the effort of calculating those features
is disregarded. This impacts the scenarios SAT-12 HAND and SAT12-INDU. The
scenarios QBF-2016 and ASP-POTASSCO are also impacted, but this is not visible in
the figure.

5.4.4 Ablation Study on Handling of Censored Labels

In section 3.2.1, the problem of incomplete performance data was introduced. These
incomplete labels are handled by setting them to µ · C.
To evaluate the impact of different µ on the behavior of hybrid decision trees, this
evaluation is done with the following configuration:

• The chosen ranking loss is the spearman footrule.

• The consensus ranking is calculated with the mean ranking.

• The stopping criterion is a maximum tree depth of 3.

In this evaluation, we do not fix ⁄ as µ impacts the regression loss (and some ranking
loss functions). Therefore, the impact of ⁄ values on hybrid decision trees trained
with different µ values, is interesting as well.

In Figure 5.20, the impact of µ on the quality of hybrid decision trees is visualized (on
SAT12-INDU). Even though the evaluated behavior of hybrid decision trees changes
on different scenarios/with different metrics for evaluation, we only show one
evaluation result here because it is a good representation of all possible evaluations
and there is no clear best µ. Almost all µ, ⁄ configurations have scenarios for which
they give good results and scenarios for which they give bad results. However, the
tendency of µ = 1 to give good performance can be seen in this graph.
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Fig. 5.20.: Overview over the performance of different hybrid decision tree configurations
with different values for µ. Since we expect both ⁄ and µ to influence each other
this evaluation is done for ⁄ œ {0, 0.1, ..., 1}.

In addition, to the aforementioned result one should take note of the following
results:

• In difference to Figure 5.20 there is a difference in hybrid decision tree perfor-
mances for ⁄ = 0.

• For most hybrid decision tree configurations, the curve is similar. This means
that the performance has a similar change in value for each step. However,
there are configurations (µ = 7.5 and µ = 1.2) that behave different to the rest
of the graphs (for ⁄ = 0.7 and ⁄ = 0.8). Interestingly, these outliers happen
for µ values that are not similar.

• While µ = 1 does not give the best quality hybrid decision trees on every
scenario, there is no scenario on which it is the worst configuration- These are
not chosen because all other evaluations above are done with µ = 1.

• There is no apparent correlation between the similarity of µ values and their
curves.

All other graphs are presented in the appendix. As mentioned before, there is no
clear best µ configuration. Nevertheless, µ = 1 it is still chosen as a hybrid decision
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tree configuration for two reasons. Firstly it seems to be an excellent general
configuration. Secondly, all other components were evaluated with µ = 1. If there is
an unforeseen strong impact of other µ values on the quality of other components,
this is not an issue here.

5.5 Comparison of Hybrid Decision Trees with Other
State of the Art Approaches

To answer whether hybrid decision trees are a good model for algorithm selection,
we need to compare them to other algorithm selection models. To that end, we first
introduce candidate hybrid decision tree configurations that are used for the final
evaluation (section 5.5.1). Then, we compare the candidate hybrid decision trees to
per algorithm decision tree regressor (section 5.5.2), a basic survival tree configura-
tion (section 5.5.3), and preexisting hybrid models that are also trained with a a
convex combination of a ranking and regression loss Equation 3.57 (section 5.5.4).

5.5.1 Component Selection for Final Evaluation

The component-wise evaluations of hybrid decision trees show that depending on
the scenarios different hybrid decision tree components perform best. It follows that
the comparison of hybrid decision trees and other models should include different
candidate hybrid decision tree configurations. We use all combinations of the
following components:

1. For ranking loss functions we evaluate hybrid decision trees with the spearman
footrule and the modified position error. The spearman footrule is chosen
since it performs well on most scenarios (best on some). The modified position
error is chosen since it performs adequately on most scenarios and is by far
the best loss function SAT12-IND(for some ⁄). The other loss functions are
disregarded.
However, it is noteworthy that an evaluation with the squared hinge loss would
be interesting for further investigation as well since it consistently has its best
performance for some ⁄ œ (0, 1).
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2. We evaluate hybrid decision trees with all ⁄ œ{0, 0.1, ..., 1}, since the hybrid
decision tree configurations. This volatile behavior shows the fixing ⁄ might
result in us not evaluating some good hybrid decision tree configurations. In
addition, a comparison to hybrid models [Han+20] is more interesting, if we
explore the impact of ⁄ on all compared models.

3. The chosen borda function is the mean ranking. It is chosen since the results
from section 5.4.2 indicated that either the mean ranking or the median
ranking has the best performance on most scenarios. Since evaluating both
borda functions here would double the number of candidates hybrid decision
trees, we decided for one.

4. The only stopping criterion used is the maximum depth stopping criterion.
However, section 5.4.3 showed that the best configuration of the maximal
depth stopping criterion depends on the scenario. Therefore, we explore
hybrid decision trees with a maximal depth of 1, 2, 3, or 4.

The following figures have the same structure introduced in section 5.4.1. For
every scenario, we have four separate figures for the evaluation with a different
scoring metric (We will only show a subset of figures. The others can be found in
the appendix). They always compare different hybrid decision tree configurations
with baselines/other approaches. Therefore, each figure shows a comparison of
the model qualities that are quantified with either the scoring function par10, the
performance regret, the percentage of unsolved instances, or the NDCG.

There are some hybrid decision tree properties that can be seen in every figure:

• All hybrid decision tree configurations of the same depth reach the same score
for ⁄ = 0. This behavior was already noted in section 5.4.1 and is caused by
trees configured with ⁄ = 0 being solely based on regression.

• A change in the stopping criteria can lead to an entirely different result. For
example in Figure 5.21 the performances of maximum depth 3 spearman
footrule and maximum depth 2 spearman footrule have very different profiles
for ⁄ < 0.5.

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
proaches

67



• Oftentimes hybrid decision trees that are trained with the same ranking loss
function have a very similar change in prediction quality based on a change of
⁄.

5.5.2 Comparison to Per Algorithm Decision Tree Regressor

As mentioned in section 5.2.2 per algorithm decision trees are based on regression
rather than ranking. The best predicted algorithm/the ranking are then extracted
from separate regression trees.
For an evaluation of the tree, hybrid decision tree comparison, we divide the scenar-
ios into three groups (based on the comparison result). For each of these groups the
comparison to the per algorithm regressor is discussed separately.

1. Scenarios on which the best hybrid decision tree configurations perform better
than per algorithm decision tree regressors.

2. Scenarios on which the best hybrid decision tree configurations perform equal
to per algorithm decision tree regressors.

3. Scenarios on which the best hybrid decision tree configurations perform worse
than per algorithm decision tree regressors.

Evaluation for Scenarios Where Hybrid Decision Trees Perform Well As mentioned
above, there are scenarios for which we have hybrid decision tree configurations
that perform well. They are:

• QBF-2016

• CPMP-2015

• MAXSAT15-PMS-INDU

While the evaluation results differ from scenario to scenario, the evaluation results
on SAT12-INDU represent the overall results well. This is the case since all of the
common evaluation properties can be found here. The evaluation is only done with
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the performance regret metric, since the other results with other scoring functions
do not give further information on the compared quality of hybrid decision trees.

Results Specific to the Evaluation of Hybrid Decision Trees on SAT12-INDU

• The best hybrid decision tree is trained with a node-wise loss function impacted
by the ranking and the regression error (maximum depth 2 - modified position
error). Here, the modified position error and the regression error do not
overpower each other. This is seen at the evaluation point ⁄ = 0.4.

• The best performance score of a hybrid decision tree trained with the modified
position error, is reached for a true combined loss.

• The best performance score of a hybrid decision tree trained with the spearman
footrule is reached for a maximum depth of 2 and ⁄ = 0.1. There is also
overpowering of errors for hybrid decision trees trained with the spearman
footrule here.

Fig. 5.21.: Quality Comparison of different hybrid decision tree configurations with the
per algorithm decision tree regressor. This evaluation is done on the scenario
SAT12-INDU with the metric performance regret.

General Results for the Quality of Hybrid Decision Trees on Scenarios where
They Perform Well

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
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• For all hybrid decision tree configurations trained with the spearman footrule,
there is a point x œ (0, 1), and for all x > ⁄, the quality of the predictions is
the same. This indicates that the spearman footrule overpowers the regression
error. However, x is dependent on the maximum depth. This result can be
seen on all scenarios where hybrid decision trees perform well or poorly alike.

• As in the evaluation on SAT12-INDU, the highest quality hybrid decision trees
are always trained with a true combined loss function.

• The best-evaluated configuration (maximum depth 2 - modified position error)
outperforms the per algorithm regressor considerably. However on other
scenarios hybrid decision trees trained with the modified position error perform
worse than those trained with the spearman footrule.

• On SAT12-INDU, all hybrid decision tree configurations outperform the per
algorithm regressor. This is different for other scenarios on which hybrid
decision trees perform well.

Evaluation for Scenarios Where Hybrid Decision Trees Perform Poorly

• SAT12-HAND

• ASP-POTASSCO

There are scenarios for which hybrid decision trees perform poorly compared to the
per algorithm regressor. The example discussed here is ASP-POTASSCO.

Results of the Evaluation of Hybrid Decision Trees on ASP-POTASSCO

• The best hybrid decision tree configurations is given by a tree that utilizes the
spearman footrule and a maximum depth of 3 for ⁄ Ø 0.9, whereas the trees
trained with ⁄ = 0.9 and ⁄ = 1 have the same performance. This might imply
that the ranking error outperforms the regression error. However, since hybrid
decision trees with ⁄ < 0.9 make poorer predictions, the errors are somewhat
similar.
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• The best quality of a hybrid decision tree that utilizes the modified position
error, is evaluated with a maximum depth of 1 and ⁄ = 1. However, hybrid
decision trees with ⁄ œ {0.3, 0.4} have almost the same prediction quality.

• There always exists ⁄ œ {0.1, ..., 0.9} for which the hybrid decision tree outper-
forms ⁄ = 0. This means that hybrid decision trees trained true hybrid losses
perform better than trees trained solely with a regression loss.

Fig. 5.22.: Quality Comparison of different hybrid decision tree configurations with the
per algorithm decision tree regressor. This evaluation is done on the scenario
ASP-POTASSCO with the metric performance regret.

General results for the performance of hybrid decision trees on scenarios where
they perform poorly

• The hybrid decision trees trained with a modified position error are more
likely to have the best quality for ⁄ ”= 1. They are more likely to have a better
performance than for 0 ”= ⁄ = 1 for some other ⁄.

• Most hybrid decision trees trained with the spearman footrule have a constant
quality for ⁄ > x (for some x < 1) have equal quality. This indicates that The
spearman footrule overpowers the ranking error.

Evaluation on CSP-2010 In evaluating different components, was mentioned that
the evaluation results on CSP-2010 often differ from the other results. Since this is

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
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the case for the comparison to per algorithm decision tree regressors we discuss this
scenario separately. In Figure 5.23 one can see the following results.

• The hybrid decision tree configurations of depth 1 (with both evaluated errors)
have the same prediction quality for all ⁄. This is the best evaluated hybrid
decision tree and beats the per algorithm decision tree regressor by a small
margin.

• Some other configurations beat the sbs for ⁄ = 1. This might imply that a
prediction that is mostly/only based on the ranking is best for two algorithms.
However, this might be different for other scenarios with two algorithms.

Fig. 5.23.: Quality Comparison of different hybrid decision tree configurations with the
per algorithm decision tree regressor. This evaluation is done on the scenario
CSP-2010 with the metric performance regret.

Conclusion on the Quality Comparison between Hybrid Decision Trees and Per Al-
gorithm Decision Tree Regressors The main conclusion from this evaluation is
that hybrid decision trees outperform the regressors for some scenarios. However
there is no simple reason for this since the scenarios properties differ and this is
worth further exploration.

One thing to note about the change in quality of hybrid decision trees that is caused
by a change in ⁄, is that hybrid decision trees trained with the same loss function
often show similar characteristics.
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5.5.3 Comparison to Survival Forests

In comparison to all survival forests [Tor+20] hybrid decision trees perform poorly.
This can be attributed to a variety of factors like the comparison of trees and forests
being unequal. Since the other survival forest approaches give largely the same
results, we only compare hybrid decision trees to the expectation survival forest
here.
Since hybrid decision trees perform poorly in comparison to survival forests on
every scenario, there is no need to split the scenarios into groups. Instead, we
first discuss the results (with par10, performance regret, percentage of unsolved
instances) on CPMP-2015 (the scenario on which hybrid decision trees perform
best compared to survival forests) in detail and then give some general context on
other scenarios. We then discuss the results evaluated with NDCG on the outlier
scenario CSP-2010 and then give context on the performance of hybrid decision
trees on other scenarios by evaluating the aforementioned compared approaches
on CPMP-2015 . Note that since we already discussed the performance of differ-
ent hybrid decision trees in detail in section 5.5.2, we do not discuss them here again.

Quality Comparison of Hybrid Decision Trees and Survival Forests Based on the
Best Predicted Algorithm As mentioned above, hybrid decision trees perform
poorly against survival forests on the scenario CPMP-2015. This can be seen in
Figure 5.24, Figure 5.25, and Figure 5.26. From these figures, one can make the
following conclusions:

• In each of those metrics, no hybrid decision tree configurations has a quality
close to the quality of the expectation algorithm survival forest.

• The performance evaluations with par10 and the performance regret indicate
that the best hybrid decision tree configurations perform about 7% worse than
the survival tree.

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
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Fig. 5.24.: Quality comparison of different hybrid decision tree configuration and expec-
tation algorithm survival forests. This is evaluated on the scenario CPMP-2015
with the metric performance regret.

Fig. 5.25.: Quality comparison of different hybrid decision tree configuration and expec-
tation algorithm survival forests. This is evaluated on the scenario CPMP-2015
with the metric par10.
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Fig. 5.26.: Quality comparison of different hybrid decision tree configuration and expec-
tation algorithm survival forests. This is evaluated on the scenario CPMP-2015
with the metric percentage of unsolved instances.

On all other scenarios, this difference in performance is much higher than the differ-
ence on CPMP-2015. The best hybrid decision tree configurations commonly make
predictions that are evaluated to be twice as bad by par10 and the performance
regret. On the scenario, with the smallest difference in quality of hybrid decision
trees and expectation survival trees is the lowest, SAT12-INDU, hybrid decision
trees still perform 60% worse than the expectation survival froestaccording to par10
(shown in Figure 5.27). In other metrics, the percentual difference in performance
is higher.

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
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Fig. 5.27.: Quality comparison of different hybrid decision tree configuration and expecta-
tion algorithm survival forests. This is evaluated on the scenario SAT12-INDU
with the metric par10.

Quality Comparison of Hybrid Decision Trees and Survival Forests Based on NDCG
Survival trees commonly beat hybrid decision trees on all (evaluated) scenarios on
the metric NDCG. The only exception is the scenario CSP-2010, on which the results
of the ablations studies frequently differed already. In Figure 5.28 the following
results of the evaluation can be seen:

• As shown in the comparison of hybrid decision trees and per algorithm decision
tree regressors (Figure 5.23), hybrid decision trees of depth 1 perform best
and are not impacted by different values of ⁄. They even beat expectation
algorithm survival forests.

• The hybrid decision trees trained with maximum depth 2, the spearman
footrule, and ⁄ Ø 0.8 have similar quality as the hybrid decision trees discussed
above.

• The hybrid decision trees trained with maximum depth 2 or 4, the spearman
footrule, and ⁄ = 1 also similar quality to the hybrid decision trees discussed
above.
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Fig. 5.28.: Quality comparison of different hybrid decision tree configuration and expecta-
tion algorithm survival forests. This is evaluated on the scenario CSP-2010 with
the metric NDCG.

However, the results of an evaluation on CSP-2010 differ from the evaluations on all
other considered here scenarios. On these scenarios hybrid decision trees perform
poor in comparison to survival trees. An example of this is given in Figure 5.29

Fig. 5.29.: Quality comparison of different hybrid decision tree configuration and expecta-
tion algorithm survival forests. This is evaluated on the scenario CPMP with the
metric NDCG.

A general result of the detailed NDCG evaluation here is that most candidate hybrid
decision tree configurations (section 5.5.1) perform best with a split that is only
based on ranking according to the NDCG.
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5.5.4 Comparison to Preexisting Hybrid Models

Due to time concerns, we could not evaluate the quality of preexisting ranking
and regression models ourselves. Instead, we build our evaluation on top of the
predictions used in the paper that originally proposed the models ([Han+20]). To
evaluate these scenarios with the metrics, described in section 4.1, we slightly altered
the code used to evaluate the preexisting hybrid models to include our evaluation
metrics. To compare the preexisting models with hybrid decision trees, we evaluated
them on the scenarios mentioned in the paper. An overview of the properties of
these scenarios is given in Figure 5.30. Note that the scenarios CPMP-2015 and
CSP-2010 are also part of the original evaluation.

Scenarios # Instances # Unsolved # A # Features C

CPMP-2015 527 0 4 22 3600
CSP-2010 2024 253 2 86 5000
MIP-2016 218 0 5 143 7200

SAT11-HAND 296 77 15 115 5000
SAT11-INDU 300 47 17 115 1200
SAT11-RAND 600 108 9 115 5000

Fig. 5.30.: Overview of the properties of the ASlib scenarios and their properties that
are used to compare hybrid decision trees to preexisting hybrid approaches.
Unsolved refers to instances all algorithms are terminated.

.

The following figures used to compare different approaches with combined loss
functions show the evaluation results in the same structure as other evaluations.
The only difference is that the quality of all models is subject to change for different
⁄ values.

The results of the comparison are discussed in three sections:

1. First, we discuss the results evaluated with the scoring functions performance
regret and percentage of unsolved instances.

2. Then, we discuss the results evaluated with par10 and NDCG. This evaluation
is divided into two parts. The discussion of scenarios on which hybrid decision
trees perform well and the discussion of scenarios on which hybrid decision
trees perform in comparison.
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3. Lastly, the results of the comparison are summarized.

Discussion of Performance Regret and Percentage of Unsolved Instances From
the results of the quality comparison of hybrid decision trees and other hybrid
models according to either the performance regret in Figure 5.31 or the percentage
of unsolved instances in Figure 5.32, one can deduce the following results::

• The other hybrid models outperform hybrid decision trees by a large margin
in both metrics.

• All hybrid decision tree configurations perform best for ⁄ Ø 0.

• All hybrid decision tree configurations of depth 1 have the same quality for all
⁄ Ø 0.1. This might imply that the ranking error overpowers the regression
error.

• All hybrid decision trees of depth greater than 1 (except depth two modified
position error) have the highest quality for a true combined loss.

• The neural network trained with the hinge loss appears perform optimal.

• All other preexisting hybrid models have the best quality according to the
performance regret for some ⁄ œ {0.1, 0.2, ..., 0.9}.

• The preexisting models appear to solve each instance. This means that for
each instance, the predicted algorithm does not need to be terminated due to
exceeding the threshold C.

5.5 Comparison of Hybrid Decision Trees with Other State of the Art Ap-
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Fig. 5.31.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
MIP-2016 according to the performance regret.

Fig. 5.32.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
MIP-2016 according to the percentage of unsolved instances.

Similar results are seen on all other scenarios.

Discussion of Par10 and NDCG The results of an evaluation with par10 and the
NDCG differ from the results above. They indicate that hybrid decision trees perform
adequate or better than the preexisting models on MIP-2015 and SAT11-HAND.
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Evaluation of Scenarios where Hybrid Decision Trees Perform Well As mentioned
above, the results on MIP-2015 and SAT-HAND differ from the other results. This
means that there are hybrid decision tree configurations that outperform some other
models according to the par10 metric. On SAT11-INDU, the four best performing
models are hybrid decision trees. This can be seen in Figure 5.33 and Figure 5.34.

In addition, the following results can be concluded from the figures:

• The preexisting models perform worst for ⁄ = 0 and best for ⁄ = 1 on
SAT11-INDU. While the quality of the predictions does not improve with every
⁄ ‘æ ⁄+0.1, there is still a general trend that the quality of the model improves
for bigger ⁄ values.

• On SAT11-INDU all hybrid decision tree configurations, but the hybrid decision
tree trained with spearman footrule and maximum depth 4, have the highest
quality for some ⁄ œ {0.1, ..., 0.9}. However, the hybrid decision tree trained
with spearman footrule and maximum depth four also has a quality that rivals
its best quality at ⁄ = 0.5.

• Some hybrid decision trees that are of higher quality than the preexisting
models.

• On MIP-2016, the preexisting models perform best for a combined ranking and
regression loss, with a tendency for the ranking loss to have a larger impact
on the choice of split than the regression loss.

• On MIP-2016, hybrid decision trees still perform best for 0 ”= ⁄ ”= 1 except for
the tree with maximal depth 1 and the spearman footrule (which is the best
hybrid decision tree configuration). However, for all trees trained with a spear-
man footrule and maximal depth less than 4, the ranking error overpowers
the regression error for high ⁄.

• The ⁄ values for which a hybrid decision tree configurations perform best are
distributed over almost all evaluation points. There does not seem to be an
underlying structure.

• Some hybrid decision tree configurations have higher quality than some preex-
isting models. However the best configurations of the preexisting models are
of higher quality than the best hybrid decision tree configurations
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Fig. 5.33.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
SAT11-INDU according to par10.

Fig. 5.34.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
MIP-2016 according to par10.

Comparing the two different approaches with NDCG, the result is that the best
performing models are different hybrid decision tree configurations. This can be
seen in Figure 5.35 and Figure 5.36. According to NDCG, one can find the following
results:
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• On SAT11-INDU, trees trained with the spearman footrule (either maximum
depth 1 or maximum depth of 2) perform best for a true combined loss with
⁄ = 0.3.

• On MIP-2016 hybrid decision trees perform best if the split is solely based on
the ranking loss.

Fig. 5.35.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
SAT11-INDU according to NDCG.

Fig. 5.36.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
MIP-2016 according to NDCG.
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It can be seen that hybrid decision trees of depth 1 can rival the quality of preexisting
models. Since the number of instances of MIP-2016 and SAT11-INDU is lower than
average this further supports the idea that hybrid decision trees perform best if the
depth is chosen depending on the number of instances. This is further supported by
the fact that on SAT11-HAND (which also has few instances) the quality margin also
appears to be smaller. However, there is not enough data for this to be more than a
hypothesis.

Scenarios Where Hybrid Decision Trees Perform poorly On all other scenarios
than SAT11-INDU and MIP-2016, hybrid decision trees get outperformed by all
other models. A good example of this is the evaluation on SAT11-HAND given in
Figure 5.37 and Figure 5.38. Since the results that focus solely on the hybrid decision
trees are largely the same as above, they are not explained in detail. However one
should note that hybrid decision trees of the same loss functions show a very similar
behavior here.

Fig. 5.37.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
SAT11-HAND according to par10.
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Fig. 5.38.: Comparison of hybrid decision trees to preexisting hybrid models on the scenario
SAT11-HAND according to NDCG.

Summary The evaluation results in comparison to other models can be summarized
with the fact that hybrid decision trees get generally outperformed by preexisting
models. However, there are scenarios for which the performance of hybrid decision
trees can rival the performance of these models (according to some metrics).
Another result is that while there is a general tendency for preexisting models to
perform best for a higher ⁄ (that does not equal 1) this generally can not be seen for
hybrid decision trees to the same extend. However there scenarios for which some
hybrid decision trees trained with the same loss function perform very similar (with
changing ⁄) like Figure 5.37 .
Lastly the comparison indicated that the idea that the maximal depth of hybrid
decision trees should be configured according to the number of instances is further
supported by this evaluation.

5.5.5 Runtime Comparison of Hybrid Decision Trees to other
Approaches

While the prediction quality of different models is essential, it is not the only factor
determining the best model. Therefore, we also evaluate the time to train hybrid
decision trees and other models on the given scenarios. The results of this evaluation
can be found in Figure 5.39. This diagram is based on the average training time in
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seconds on the folds as explained in section 5.1. However, the machine was idle,
and no multiprocessing was used.

The results of this training process are:

• The per algorithm decision tree regressor is the model with the by far best
training runtime.

• The runtime of training hybrid decision trees is smaller than training an ex-
pectation survival forest on all scenarios but CSP-2010 and CPMP-2015. This
might indicate that hybrid decision trees seem to perform comparatively worse
if there are fewer candidate algorithms. This is further supported by the
training time needed for ASP-POTASSCO since it has the third-lowest amount
of algorithms, and the training of hybrid decision trees needs the third most
resources compared to the survival forest.

• The amount with which the training time needed for hybrid decision trees
increases faster than linear based on the depth.
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Fig. 5.39.: Comparison of of different models’ training runtimes depending on the scenario.
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Conclusion on Hybrid

Decision Trees

6

The prediction quality of all hybrid decision tree configurations proposed in this
thesis is lower than the quality of state-of-the-art approaches. However, this thesis
still gives interesting results discussed in section 6.1. Building on these results,
possible avenues of future exploration are discussed in section 6.2.

6.1 Evaluation Results

Different results can be concluded from the evaluation in chapter 5. Some of them
are general results, some deal with the quality of hybrid decision tree components,
and some are are results of the comparison of hybrid decision trees and other
algorithm selection models. The discussion of the evaluation results is structured as
follows:

• Preceding a discussion of results that answer our research questions, some
general evaluation results are explained in section 6.1.1.

• In section 6.1.2 results of our components-wise evaluation are discussed, which
answers our first and second research questions.

• Then, the results of a comparison between hybrid decision trees and other state-
of-the-art approaches (in both model quality and training runtime) are dis-
cussed to answer the third, fourth, and fifth research questions (section 6.1.3).

• Lastly, the overall results are discussed.
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6.1.1 General Results

The following general results can be derived from our evaluation: Firstly, the evalua-
tion metrics percentage of unsolved instances and par10 (as defined in section 4.1.1)
show some contradicting behavior caused by the definition of unsolved instances. In
the percentage of unsolved instances, we do not consider the effort of calculating
features to determine whether an algorithm solves an instance. However, in par10,
the effort of calculating features is added to the ground truth performance of the
predicted algorithm, and if the resulting performance exceeds the cutoff, the pre-
diction is considered unsolved. This mismatch complicates an interpretation of the
evaluation results.
The second general result is that the quality of algorithm selection models depends
on the scenario. The comparison of hybrid decision trees to other models often
shows that the best model is dependent on the scenario. In addition, the scenario
CSP-2010 often causes different performances of hybrid decision trees.
The last noteworthy result mentioned here is that some ranking losses outperform
the regression loss on some scenarios. This commonly happens for the spearman
footrule.

6.1.2 Component-Wise Evaluation Results on Hybrid Decision
Trees

The component-wise evaluation is mainly used to find suitable candidate config-
urations compared to other algorithm selection approaches. The results are best
discussed separately for each component.

The evaluation of different split loss configurations (different ranking losses and
different ⁄) showed that on most scenarios, the split is best chosen based on both
ranking and regression loss functions. The best ranking loss functions for the choice
of split are the modified position error (Equation 3.44) and the spearman footrule
(Equation 3.27). The other losses either worked poorly with the hybrid decision tree
structure or as a loss function in a convex combination.
In evaluating different borda functions (also used in calculating a split loss), our
results indicate that no overall best borda function exists. However, hybrid decision
trees trained with mean and median ranking had the highest average quality.
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The evaluation of different stopping criteria indicated that the best stopping criterion
is the maximal depth of a tree. Therefore a node is only split if the maximum depth
is not reached, whereas the choice of maximal depth strongly depends on the given
scenarios. The results imply that trees of smaller depth might perform better if either
a small set of training instances or a small set of candidate algorithms exist.

6.1.3 Evaluation Results of the Comparison of Hybrid Decision
Trees with other models

Evaluation Based on the Quality of Predictions As mentioned above, the quality of
different models is dependent on the given scenarios.
This is supported by the comparison of hybrid decision trees with the per algorithm
regressors. This comparison shows that hybrid decision trees perform better than
regressors on some scenarios and more poorly on others.
However, the comparison with the expectation survival forest (candidate survival
forest model chosen in this thesis) shows that hybrid decision trees generally perform
worse. The only exception is the evaluation on CSP-2010 with the metric NDCG (a
measure of the overall ranking quality, not the prediction of the best algorithm).

The most interesting comparison is of hybrid decision trees and preexisting algorithm
selection models. Interestingly there is no general similarity in the prediction quality
of the two models. While the preexisting hybrid models mostly perform best for
a focus on ranking without disregarding regression, hybrid decision trees have no
such general tendency over all loss functions. However, they perform best for one
⁄ that disregards neither ranking nor regression. As in preexisting models, hybrid
decision trees trained with the same ranking loss but different stopping criteria often
perform similarly on the same scenario.
In prediction quality, hybrid decision trees are worse than the preexisting models
on almost every scenario (with almost every metric). The only exceptions are
the scenarios SAT11-INDU and MIP-2016 (both have relatively few instances) on
which hybrid decision trees perform comparatively well or some hybrid decision tree
configurations even beat the best preexisting models.

Implications for the Training Resources Needed As in the quality evaluation of
trees, the training resources needed are dependent on the underlying scenario. The
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results of this evaluation can be divided into two parts. Results that are only based
on hybrid decision trees and results that are based on the comparison to other
models.
While it is obvious that the time needed to train a hybrid decision tree increases if
the maximal depth is increased, it is noteworthy that the runtime increases faster
than linear to the depth.
Compared to the per algorithm decision tree regressor, both hybrid decision trees
and expectation forests perform poorly. They need much longer training.
Survival forests need more training time than hybrid decision trees for most scenarios.
However, on the scenarios, CSP-2010 and CPMP-2015 expectation forests need less
training time than hybrid decision trees. This might be induced by the small number
of candidate algorithms in CSP-2010 and CPMP-2015.

6.1.4 Overall Result

Overall the prediction quality of hybrid decision trees is worse than of other state-
of-the-art approaches on most scenarios. However, there are a few scenarios on
which hybrid decision trees rival per algorithm decision tree regressors or preexisting
hybrid approaches.
The result that hybrid ranking and regression loss functions increase the prediction
quality and that some hybrid decision tree configurations rival other approaches are
by far the most noteworthy results and imply that either further research could im-
prove the quality of hybrid decision trees, other methods of combining ranking and
regression should be explored, or the quality of combined ranking and regression
models should be explored for approaches outside of the scope of algorithm selection.

6.2 Future Work

The results of this thesis imply possible directions for future research. These can be
divided into future work that aims to improve hybrid decision trees as a model for
algorithm selection and other research encouraged by this thesis’s result.
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Future Work on Hybrid Decision Trees There are various ways to extend our re-
search of hybrid decision trees over the scope of this thesis. Firstly one could
introduce more hybrid decision tree components. This is especially interesting for
components that impact the split loss function since one central issue of combining
ranking and regression is finding loss functions that work well together. Additionally,
one could extend the evaluation in this thesis with more ⁄ values or datasets, which
could lead to more impactfull and concrete results.
Compared to these more minor additions, one could also expand hybrid decision
trees to a forest of hybrid decision trees or explore the usage of feature preprocessing
algorithms for hybrid decision trees.

6.2.1 Future Work Motivated by Hybrid Decision Trees

Since a combination of ranking and regression is an improvement over plain rank-
ing/regression, one could also try to combine these two approaches for other models.
An example would be creating a model consisting of separate ranking and regression
forests with a consensus mechanism. Another combined ranking and regression
approach would be utilizing a regression model trained with a performance function
based on a combination of performances and ranking.

In addition to applying ranking and regression to algorithm selection, one could try
to apply hybrid decision trees in other machine learning areas. This is interesting
since the quality of hybrid decision trees is dependent on the underlying scenario
and there might be scenarios for which hybrid decision trees are a better fit.
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